Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38544073

RESUMO

The adoption of high-density electrode systems for human-machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human-machine interfaces.


Assuntos
Artefatos , Humanos , Eletromiografia , Eletrodos , Movimento (Física)
2.
Micromachines (Basel) ; 15(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399008

RESUMO

Compound nerve action potentials (CNAPs) were used as a metric to assess the stimulation performance of a novel high-density, transverse, intrafascicular electrode in rat models. We show characteristic CNAPs recorded from distally implanted cuff electrodes. Evaluation of the CNAPs as a function of stimulus current and calculation of recruitment plots were used to obtain a qualitative approximation of the neural interface's placement and orientation inside the nerve. This method avoids elaborate surgeries required for the implantation of EMG electrodes and thus minimizes surgical complications and may accelerate the healing process of the implanted subject.

3.
Phys Rev Lett ; 131(16): 160202, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925720

RESUMO

Noise is ubiquitous in nature, so it is essential to characterize its effects. Considering a fluctuating Hamiltonian, we introduce an observable, the stochastic operator variance (SOV), which measures the spread of different stochastic trajectories in the space of operators. The SOV obeys an uncertainty relation and allows us to find the initial state that minimizes the spread of these trajectories. We show that the dynamics of the SOV is intimately linked to that of out-of-time-order correlators, which define the quantum Lyapunov exponent λ. Our findings are illustrated analytically and numerically in a stochastic Lipkin-Meshkov-Glick Hamiltonian undergoing energy dephasing.

4.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657923

RESUMO

The spinal motor neurons are the only neural cells whose individual activity can be noninvasively identified. This is usually done using grids of surface electromyographic (EMG) electrodes and source separation algorithms; an approach called EMG decomposition. In this study, we combined computational and experimental analyses to assess how the design parameters of grids of electrodes influence the number and the properties of the identified motor units. We first computed the percentage of motor units that could be theoretically discriminated within a pool of 200 simulated motor units when decomposing EMG signals recorded with grids of various sizes and interelectrode distances (IEDs). Increasing the density, the number of electrodes, and the size of the grids, increased the number of motor units that our decomposition algorithm could theoretically discriminate, i.e., up to 83.5% of the simulated pool (range across conditions: 30.5-83.5%). We then identified motor units from experimental EMG signals recorded in six participants with grids of various sizes (range: 2-36 cm2) and IED (range: 4-16 mm). The configuration with the largest number of electrodes and the shortest IED maximized the number of identified motor units (56 ± 14; range: 39-79) and the percentage of early recruited motor units within these samples (29 ± 14%). Finally, the number of identified motor units further increased with a prototyped grid of 256 electrodes and an IED of 2 mm. Taken together, our results showed that larger and denser surface grids of electrodes allow to identify a more representative pool of motor units than currently reported in experimental studies.


Assuntos
Algoritmos , Neurônios Motores , Humanos , Eletrodos
5.
Adv Mater ; 35(33): e2301493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227134

RESUMO

The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that match the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro. Here, a synthetic, bioactive hydrogel is synthesized that mimics the native lung modulus and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin-binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which enables quiescent culture of human lung fibroblasts (HLFs). Stimulation with transforming growth factor ß1 (TGF-ß1), metastatic breast cancer conditioned media (CM), or tenascin-C-derived integrin-binding peptide activated hydrogel-encapsulated HLFs demonstrates multiple environmental methods to activate HLFs in a lung ECM-mimicking hydrogel. This lung hydrogel platform is a tunable, synthetic approach to studying the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.


Assuntos
Neoplasias da Mama , Tenascina , Humanos , Feminino , Tenascina/metabolismo , Tenascina/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos , Hidrogéis/química , Peptídeos/química , Pulmão , Integrinas/metabolismo
6.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865293

RESUMO

The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that contain the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro . Here, we developed a synthetic, bioactive hydrogel that mimics the native lung modulus, and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which promotes quiescence of human lung fibroblasts (HLFs). Stimulation with transforming growth factor ß1 (TGF-ß1), metastatic breast cancer conditioned media (CM), or tenascin-C activated these hydrogel-encapsulated HLFs in a manner reflective of their native in vivo responses. We propose this lung hydrogel platform as a tunable, synthetic approach to study the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.

7.
Adv Healthc Mater ; 12(14): e2202275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625629

RESUMO

Breast cancer is a leading cause of global cancer-related deaths, and metastasis is the overwhelming culprit of poor patient prognosis. The most nefarious aspect of metastasis is dormancy, a prolonged period between primary tumor resection and relapse. Current therapies are insufficient at killing dormant cells; thus, they can remain quiescent in the body for decades until eventually undergoing a phenotypic switch, resulting in metastases that are more adaptable and drug resistant. Unfortunately, dormancy has few in vitro models, largely because lab-derived cell lines are highly proliferative. Existing models address tumor dormancy, not cellular dormancy, because tracking individual cells is technically challenging. To combat this problem, a live cell lineage approach to find and track individual dormant cells, distinguishing them from proliferative and dying cells over multiple days, is adapted. This approach is applied across a range of different in vitro microenvironments. This approach reveals that the proportion of cells that exhibit long-term quiescence is regulated by both cell intrinsic and extrinsic factors, with the most dormant cells found in 3D collagen gels. This paper envisions that this approach will prove useful to biologists and bioengineers in the dormancy community to identify, quantify, and study dormant tumor cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Linhagem da Célula , Neoplasias da Mama/patologia , Microambiente Tumoral
8.
J Med Eng Technol ; 45(3): 187-196, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33729074

RESUMO

Activation of peripheral nervous system (PNS) fibres to produce variable tactile and proprioceptive sensations in advanced bidirectional prosthetic limbs relies on neural stimulators with high spatial selectivity, dynamic range and resolution. A multi-channel application-specific integrated circuit (ASIC) is developed for PNS fibre activation using a wide dynamic range (10 nA-5 mA), high-resolution (30 nA step, 100 ns pulse accuracy) current stimulator, dissipating 0.73-2.75 mW at 3 V. The ASIC also enables encoding of external pressure signals via an integrate-and-fire methodology. Electrophysiological data of compound nerve action potentials were recorded for a range of stimulus amplitudes and pulse widths. This data was used to benchmark the performance of the ASIC with a known neural stimulator.


Assuntos
Nervos Periféricos
9.
PLoS One ; 13(10): e0204765, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332434

RESUMO

Published data on the mechanical strength and elasticity of lung tissue is widely variable, primarily due to differences in how testing was conducted across individual studies. This makes it extremely difficult to find a benchmark modulus of lung tissue when designing synthetic extracellular matrices (ECMs). To address this issue, we tested tissues from various areas of the lung using multiple characterization techniques, including micro-indentation, small amplitude oscillatory shear (SAOS), uniaxial tension, and cavitation rheology. We report the sample preparation required and data obtainable across these unique but complimentary methods to quantify the modulus of lung tissue. We highlight cavitation rheology as a new method, which can measure the modulus of intact tissue with precise spatial control, and reports a modulus on the length scale of typical tissue heterogeneities. Shear rheology, uniaxial, and indentation testing require heavy sample manipulation and destruction; however, cavitation rheology can be performed in situ across nearly all areas of the lung with minimal preparation. The Young's modulus of bulk lung tissue using micro-indentation (1.4±0.4 kPa), SAOS (3.3±0.5 kPa), uniaxial testing (3.4±0.4 kPa), and cavitation rheology (6.1±1.6 kPa) were within the same order of magnitude, with higher values consistently reported from cavitation, likely due to our ability to keep the tissue intact. Although cavitation rheology does not capture the non-linear strains revealed by uniaxial testing and SAOS, it provides an opportunity to measure mechanical characteristics of lung tissue on a microscale level on intact tissues. Overall, our study demonstrates that each technique has independent benefits, and each technique revealed unique mechanical features of lung tissue that can contribute to a deeper understanding of lung tissue mechanics.


Assuntos
Pulmão/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Congelamento , Humanos , Técnicas In Vitro , Complacência Pulmonar/fisiologia , Masculino , Modelos Biológicos , Mecânica Respiratória/fisiologia , Reologia/métodos , Sus scrofa
10.
J Neurosci ; 37(22): 5429-5446, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28473641

RESUMO

After lesions of the CNS, locomotor abilities of animals (mainly cats) are often assessed on a simple flat treadmill (FTM), which imposes little demands on supraspinal structures as is the case when walking on targets. Therefore, the aims of the present work were as follows: (1) to develop a treadmill allowing the assessment of locomotion of intact cats required to place the paws on the rungs of a moving ladder treadmill (LTM); (2) to assess the capability of cats after a unilateral spinal hemisection at T10 to cope with such a demanding locomotor task; and (3) to regularly train cats for 6 weeks on the LTM to determine whether such regular training improves locomotor recovery on the FTM. A significant improvement would indicate that LTM training maximizes the contribution of spinal locomotor circuits as well as remnant supraspinal inputs. Together, we used 9 cats (7 females, 2 males). Six were used to compare the EMG and kinematic locomotor characteristics during walking on the FTM and LTM. We found that the swing phase during LTM walking was slightly enhanced as well as some specific activity of knee flexor muscles. Fore-hindlimb coupling favored a more stable diagonal coupling. These 6 cats were then hemispinalized and trained for 6 weeks on the LTM, whereas the 3 other cats were hemispinalized and trained solely on the FTM to compare the two training regimens. Intensive LTM training after hemisection was found to change features of locomotion, such as the foot trajectory as well as diminished paw drag often observed after hemisection.SIGNIFICANCE STATEMENT This paper introduces a method (ladder treadmill [LTM]) to study the locomotor ability of cats with an intact spinal cord or after a unilateral hemisection to walk with a precise foot placement on the rungs fixed to an ordinary flat treadmill (FTM). Because cats are compared in various conditions (intact or hemisected at different time points) in the same enclosure on the FTM and the LTM, the changes in averaged locomotor characteristics must reflect the specificity of the task and the neurological states. Furthermore, the ladder treadmill permits to train cats repetitively for weeks and observe whether training regimens (FTM or LTM) can induce durable changes in the parameters of locomotion.


Assuntos
Teste de Esforço/instrumentação , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação , Marcha , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Animais , Gatos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Esforço/métodos , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Membro Posterior/fisiopatologia , Masculino , Condicionamento Físico Animal/instrumentação , Condicionamento Físico Animal/métodos , Traumatismos da Medula Espinal/diagnóstico , Resultado do Tratamento
11.
Phys Rev E ; 94(6-1): 062130, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085483

RESUMO

We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with the direct Toda simulation results. We also discuss a transformation to "normal mode" variables, as commonly done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for the integrable system. The striking differences between the Toda chain and a truncated version, expected to be nonintegrable, are pointed out.

12.
J Neurosci ; 35(25): 9446-55, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109667

RESUMO

After an incomplete spinal cord injury (SCI), we know that plastic reorganization occurs in supraspinal structures with residual descending tracts. However, our knowledge about spinal plasticity is rather limited. Our recent studies point to changes within the spinal cord below the lesion. After a lateral left hemisection (T10), cats recovered stepping with both hindlimbs within 3 weeks. After a complete section (T13) in these cats, bilateral stepping was seen on the next day, a skill usually acquired after several weeks of treadmill training. This indicates that durable plastic changes occurred below the lesion. However, because sensory feedback entrains the stepping rhythm, it is difficult to reveal central pattern generator (CPG) adaptation. Here, we investigated whether lumbar segments of cats with a chronic hemisection were able to generate fictive locomotion-that is, without phasic sensory feedback as monitored by five muscle nerves in each hindlimb. With a chronic left hemisection, the number of muscle nerves displaying locomotor bursts was larger on the left than on the right. In addition, transmission of cutaneous reflexes was relatively facilitated on the left. Later during the acute experiment, a complete spinalization (T13) was performed and clonidine was injected to induce rhythmic activities. There were still more muscle nerves displaying locomotor bursts on the left. The results demonstrate that spinal networks were indeed modified after a hemisection with a clear asymmetry between left and right in the capacity to generate locomotion. Plastic changes in CPG and reflex transmission below the lesion are thus involved in the stepping recovery after an incomplete SCI.


Assuntos
Geradores de Padrão Central/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Gatos , Modelos Animais de Doenças , Eletromiografia/métodos , Lateralidade Funcional/fisiologia , Região Lombossacral , Músculo Esquelético/inervação
13.
Prog Brain Res ; 218: 173-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890137

RESUMO

This chapter reviews a number of experiments on the recovery of locomotion after various types of spinal lesions and locomotor training mainly in cats. We first recall the major evidence on the recovery of hindlimb locomotion in completely spinalized cats at the T13 level and the role played by the spinal locomotor network, also known as the central pattern generator, as well as the beneficial effects of locomotor training on this recovery. Having established that hindlimb locomotion can recover, we raise the issue as to whether spinal plastic changes could also contribute to the recovery after partial spinal lesions such as unilateral hemisections. We found that after such hemisection at T10, cats could recover quadrupedal locomotion and that deficits could be improved by training. We further showed that, after a complete spinalization a few segments below the first hemisection (at T13, i.e., the level of previous studies on spinalization), cats could readily walk with the hindlimbs within hours of completely severing the remaining spinal tracts and not days as is usually the case with only a single complete spinalization. This suggests that neuroplastic changes occurred below the first hemisection so that the cat was already primed to walk after the spinalization subsequent to the hemispinalization 3 weeks before. Of interest is the fact that some characteristic kinematic features in trained or untrained hemispinalized cats could remain after complete spinalization, suggesting that spinal changes induced by training could also be durable. Other studies on reflexes and on the pattern of "fictive" locomotion recorded after curarization corroborate this view. More recent work deals with training cats in more demanding situations such as ladder treadmill (vs. flat treadmill) to evaluate how the locomotor training regimen can influence the spinal cord. Finally, we report our recent studies in rats using compressive lesions or surgical complete spinalization and find that some principles of locomotor recovery in cats also apply to rats when adequate locomotor training is provided.


Assuntos
Locomoção/fisiologia , Condicionamento Físico Animal , Traumatismos da Medula Espinal/reabilitação , Animais , Gatos , Modelos Animais de Doenças , Lateralidade Funcional , Plasticidade Neuronal/fisiologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/classificação
14.
Artif Organs ; 39(2): E36-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25053505

RESUMO

This work evaluated the subchronic stimulation performance of an intraneural multichannel electrode (transverse intrafascicular multichannel electrode, TIME) in a large human-sized nerve. One or two TIMEs were implanted in the right median nerve above the elbow joint in four pigs for a period of 32 to 37 days (six TIMEs in total). The ability of the contact sites to recruit five muscles in the forelimb was assessed via their evoked electromyographic responses. Based on these responses, a selectivity index was defined. Four TIMEs were able to selectively recruit a subset of muscles throughout the implantation period. The required recruitment current significantly increased, while there was a tendency for the recruitment selectivity to decrease over time. Histological assessment showed that all TIMEs remained inside the nerve and that they were located between fascicles. The average thickness of the encapsulation of the electrode was estimated to be 115.4 ± 51.5 µm (mean ± SD). This study demonstrates the feasibility of keeping the TIME electrodes fixed and functional inside a large polyfascicular human-sized nerve in a subchronic setting.


Assuntos
Estimulação Elétrica , Eletrodos Implantados , Nervo Mediano/fisiologia , Porco Miniatura/fisiologia , Animais , Desenho de Equipamento , Feminino , Suínos
15.
Int J Artif Organs ; 37(6): 466-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24980257

RESUMO

Before a novel peripheral nerve interface can be applied in a neural prosthesis for human use, it is important to determine the biocompatibility of the device. The aim of the present study was to assess the biosafety of the recently developed transverse intrafascicular multi-channel electrode (TIME) in a large nerve animal model. Six TIMEs were implanted (33-38 days) into the median nerves of Göttingen minipigs, and nerve specimens were harvested for histological analysis. We analyzed samples from the area of the implant and from control regions. We found an expected layer of fibrosis around the implant and fibroblasts in both the implant and control region, however, we found no significant presence of inflammatory cells or necrosis. Our results indicated that the TIME may be an attractive, biocompatible neural interface for future neuroprosthesis applications in the clinic setting.


Assuntos
Eletrodos Implantados , Segurança de Equipamentos , Nervo Mediano/cirurgia , Próteses Neurais , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Suínos , Porco Miniatura
16.
IEEE Trans Neural Syst Rehabil Eng ; 22(2): 400-10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23799699

RESUMO

Neural prostheses are limited by the availability of peripheral neural electrodes to record the user's intention or provide sensory feedback through functional electrical stimulation. Our objective was to compare the ability of the novel "transverse intrafascicular multi-channel electrode" (TIME) and an earlier generation "thin-film longitudinal intrafascicular electrode" (tfLIFE) to selectively stimulate nerve fascicles and activate forelimb muscles in pigs. TIME was designed to access a larger subpopulation of fascicles than tfLIFE and should therefore be able to selectively activate a larger number of muscles. Electrodes were implanted in the median nerve, and sequential electric stimulation was applied to individual contacts. The compound muscle action potentials of seven muscles were recorded to quantify muscle recruitment. As expected, TIME was able to recruit more muscles with higher selectivity than tfLIFE (significant difference when comparing the performance of an entire electrode); a similar activation current was used (no significant difference). Histological analysis revealed that electrodes were located between fascicles, which influenced the selectivity and activation current level. In conclusion, TIME is a viable neural interface for selective activation of multiple fascicles in human-sized nerves that may assist to pave the way for future neuroprosthesis applications.


Assuntos
Estimulação Elétrica/métodos , Eletrodos Implantados , Próteses Neurais , Nervos Periféricos/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Análise de Variância , Animais , Interpretação Estatística de Dados , Eletrodos Implantados/efeitos adversos , Desenho de Equipamento , Feminino , Membro Anterior/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico , Suínos
17.
Biomed Tech (Berl) ; 57(6): 457-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23037514

RESUMO

Phantom limb pain (PLP) is a chronic condition that develops in the majority of amputees. The underlying mechanisms are not completely understood, and thus, no treatment is fully effective. Based on recent studies, we hypothesize that electrical stimulation of afferent nerves might alleviate PLP by giving sensory input to the patient if nerve fibers can be activated selectively. The critical component in this scheme is the implantable electrode structure. We present a review of a novel electrode concept to distribute highly selective electrode contacts over the complete cross section of a peripheral nerve to create a distributed activation of small nerve fiber ensembles at the fascicular level, the transverse intrafascicular multichannel nerve electrode (TIME). The acute and chronic implantations in a small animal model exhibited a good surface and structural biocompatibility as well as excellent selectivity. Implantation studies on large animal models that are closer to human nerve size and anatomical complexity have also been conducted. They proved implant stability and the ability to selectively activate nerve fascicles in a limited proximity to the implant. These encouraging results have opened the way forward for human clinical trials in amputees to investigate the effect of selective electrical stimulation on PLP.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Nervos Periféricos/fisiopatologia , Membro Fantasma/prevenção & controle , Membro Fantasma/fisiopatologia , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Membro Fantasma/reabilitação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA