RESUMO
BACKGROUND: In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism. RESULTS: Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress. CONCLUSIONS: This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.
RESUMO
Tardigrades can survive hostile environments such as desiccation by adopting a state of anhydrobiosis. Numerous tardigrade species have been described thus far, and recent genome and transcriptome analyses revealed that several distinct strategies were employed to cope with harsh environments depending on the evolutionary lineages. Detailed analyses at the cellular and subcellular levels are essential to complete these data. In this work, we analyzed a tardigrade species that can withstand rapid dehydration, Ramazzottius varieornatus. Surprisingly, we noted an absence of the anhydrobiotic-specific extracellular structure previously described for the Hypsibius exemplaris species. Both Ramazzottius varieornatus and Hypsibius exemplaris belong to the same evolutionary class of Eutardigrada. Nevertheless, our observations reveal discrepancies in the anhydrobiotic structures correlated with the variation in the anhydrobiotic mechanisms.
Assuntos
Dessecação , Tardígrados , Tardígrados/fisiologia , AnimaisRESUMO
Tardigrades are small aquatic invertebrates known for their remarkable tolerance to diverse extreme stresses. To elucidate the in vivo mechanisms underlying this extraordinary resilience, methods for genetically manipulating tardigrades have long been desired. Despite our prior success in somatic cell gene editing by microinjecting Cas9 ribonucleoproteins (RNPs) into the body cavity of tardigrades, the generation of gene-edited individuals remained elusive. In this study, employing an extremotolerant parthenogenetic tardigrade species, Ramazzottius varieornatus, we established conditions that led to the generation of gene-edited tardigrade individuals. Drawing inspiration from the direct parental CRISPR (DIPA-CRISPR) technique employed in several insects, we simply injected a concentrated Cas9 RNP solution into the body cavity of parental females shortly before their initial oviposition. This approach yielded gene-edited G0 progeny. Notably, only a single allele was predominantly detected at the target locus for each G0 individual, indicative of homozygous mutations. By co-injecting single-stranded oligodeoxynucleotides (ssODNs) with Cas9 RNPs, we achieved the generation of homozygously knocked-in G0 progeny, and these edited alleles were inherited by G1/G2 progeny. This is the first example of heritable gene editing in the entire phylum of Tardigrada. This establishment of a straightforward method for generating homozygous knockout/knock-in individuals not only facilitates in vivo analyses of the molecular mechanisms underpinning extreme tolerance, but also opens up avenues for exploring various topics, including Evo-Devo, in tardigrades.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Homozigoto , Partenogênese , Tardígrados , Animais , Tardígrados/genética , Edição de Genes/métodos , Partenogênese/genética , Feminino , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes , AlelosRESUMO
The tardigrade Ramazzottius varieornatus has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in R. varieornatus, HSP20-3 and HSP20-6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 0C of adult tardigrades with HSP20-3 being one of the most highly upregulated gene in the whole transcriptome. Both R. varieornatus sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20-3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20-3 and HSP20-6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20-3 formed filament-like structures. The particles and filament-like structures formed by HSP20-3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20-3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20-3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20-3 to protein condensate formation.
Assuntos
Proteínas de Choque Térmico Pequenas , Humanos , Proteínas de Choque Térmico Pequenas/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Chaperonas Moleculares/metabolismo , Resposta ao Choque TérmicoRESUMO
Among hymenopteran insects, aculeate species such as bees, ants, and wasps have enlarged and morphologically elaborate mushroom bodies (MBs), a higher-order brain center in the insect, implying their relationship with the advanced behavioral traits of aculeate species. The molecular bases leading to the acquisition of complicated MB functions, however, remains unclear. We previously reported the constitutive and MB-preferential expression of an ecdysone-signaling related transcription factor, Mblk-1/E93, in the honey bee brain. Here, we searched for target genes of Mblk-1 in the worker honey bee MBs using chromatin immunoprecipitation sequence analyses and found that Mblk-1 targets several genes involved in synaptic plasticity, learning, and memory abilities. We also demonstrated that Mblk-1 expression is self-regulated via Mblk-1-binding sites, which are located upstream of Mblk-1. Furthermore, we showed that the number of the Mblk-1-binding motif located upstream of Mblk-1 homologs increased associated with evolution of hymenopteran insects. Our findings suggest that Mblk-1, which has been focused on as a developmental gene transiently induced by ecdysone, has acquired a novel expression pattern to play a role in synaptic plasticity in honey bee MBs, raising a possibility that molecular evolution of Mblk-1 may have partly contributed to the elaboration of MB function in insects.
Assuntos
Ecdisona , Corpos Pedunculados , Animais , Abelhas/genética , Corpos Pedunculados/metabolismo , Ecdisona/metabolismo , Fatores de Transcrição/metabolismo , Plasticidade Neuronal/genética , Regulação da Expressão Gênica , Encéfalo/metabolismoRESUMO
The genus Paramacrobiotus was erected in 2009 from the genus Macrobiotus, and 43 Paramacrobiotus species have been described to date. Although the first genome sequence in the genus was reported for the TYO strain of Paramacrobiotus sp., which is a dioecious species and has five bivalent chromosomes, its precise taxonomic identification remained undetermined. Here, we report its morphology, confirming the presence of a microplacoid, cuticular bulge on the inner side of legs IIII, and granulation on the inner side of legs IV under both light and electron microscopy, and smooth areoles on the egg shell, indicating that it differs from other described species. In addition, the previously described karyotype 2n=10 of this strain is clearly distinct from other species of the genus Paramacrobiotus, supporting the hypothesis that the strain represents a new species. Molecular analyses for the small and large ribosomal subunit (18S rDNA, 28S rDNA), the internal transcribed spacer 2 (ITS-2) and cytochrome C oxidase subunit I (COI) were also performed. The TYO strain is most similar in the analysed nuclear markers to Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa Roszkowska, 2020 and Paramacrobiotus sp. strain MG.002 (p-distances in 18S rDNA: 0.53%, 28S rDNA: 0.981.12%, and ITS-2: 9.9%), which corroborates with the overall morphological similarity between these taxa. Despite the close relationship between the TYO strain and P. experimentalis, the genetic species delimitation based on molecular analysis indicates that the TYO strain indeed is a distinct species. Therefore, this tardigrade is described here as Paramacrobiotus metropolitanus sp. nov.
Assuntos
Tardígrados , Animais , DNA Ribossômico , Genômica , Japão , ReproduçãoRESUMO
Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.
Assuntos
Tardígrados , Animais , Humanos , Desidratação , Estrutura Secundária de Proteína , Proteínas/metabolismo , Tardígrados/genéticaRESUMO
Tardigrades are small aquatic animals known for the tolerant ability against various extreme stresses. Recent studies identified several tardigrade-unique proteins as protective factors of biomolecules from extreme stresses. Due to the limitation of the technique available in tardigrades, the function of these protective molecules has largely been studied utilizing the systems of in vitro and the heterologous expression in other organisms. Although RNAi is feasible in tardigrades, their effects are variable and not always sufficient. To analyze the functions of the tardigrade protective proteins, in vivo genetic manipulations have been desired. In this study, we used a tardigrade Hypsibius exemplaris as a model whose genome is available, and developed the delivery method of Cas9 ribonucleoproteins (RNPs) to adult tardigrade cells. Cas9 RNPs containing two kinds of crRNAs were injected to the body cavity of adult tardigrades and subjected to the subsequent electroporation to facilitate the incorporation of RNPs to the cells. Using this delivery method, we detected the deletion of the intervening region between two crRNAs from the genome. Intriguingly, all examined joining sites exhibited no incorporation of insertions/deletions (indels), suggesting that no-indel end-joining is dominant repair system in this tardigrade. We also detected similar removal of the intervening region even in the tardigrades injected with Cas9 RNPs without electroporation and in this case the no-indel end-joining is detected in still dominant but not all examined joining sites. This study provides the development of the delivery method of Cas9 RNPs to tardigrade cells and our data also suggested that simultaneous application of more than two crRNAs/gRNAs are recommended to disrupt the target gene by CRISPR/Cas9 system to avoid scarless repair in the tardigrade.
Assuntos
Sistemas CRISPR-Cas , Tardígrados , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Mutação INDEL , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/metabolismo , Tardígrados/genética , Tardígrados/metabolismoRESUMO
Trehalose is a versatile non-reducing sugar. In some animal groups possessing its intrinsic production machinery, it is used as a potent protectant against environmental stresses, as well as blood sugar. However, the trehalose biosynthesis genes remain unidentified in the large majority of metazoan phyla, including vertebrates. To uncover the evolutionary history of trehalose production machinery in metazoans, we scrutinized the available genome resources and identified bifunctional trehalose-6-phosphate synthase-trehalose-6-phosphate phosphatase (TPS-TPP) genes in various taxa. The scan included our newly sequenced genome assembly of a desiccation-tolerant tardigrade Paramacrobiotus sp. TYO, revealing that this species retains TPS-TPP genes activated upon desiccation. Phylogenetic analyses identified a monophyletic group of the many of the metazoan TPS-TPP genes, namely 'pan-metazoan' genes, that were acquired in the early ancestors of metazoans. Furthermore, coordination of our results with the previous horizontal gene transfer studies illuminated that the two tardigrade lineages, nematodes and bdelloid rotifers, all of which include desiccation-tolerant species, independently acquired the TPS-TPP homologues via horizontal transfer accompanied with loss of the 'pan-metazoan' genes. Our results indicate that the parallel evolution of trehalose synthesis via recurrent loss and horizontal transfer of the biosynthesis genes resulted in the acquisition and/or augmentation of anhydrobiotic lives in animals.
Assuntos
Evolução Biológica , Transferência Genética Horizontal , Trealose/biossíntese , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia , Sequenciamento Completo do GenomaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
In the honey bee, the mushroom bodies (MBs), a higher-order center in insect brain, comprise interneurons termed Kenyon cells (KCs). We previously reported that Mblk-1, which encodes a transcription factor involved in ecdysteroid-signaling, is expressed preferentially in the large-type KCs (lKCs) in the pupal and adult worker brain and that phosphorylation by the Ras/MAPK pathway enhances the transcriptional activity of Mblk-1 in vitro. In the present study, we performed immunoblotting and immunofluorescence studies using affinity-purified anti-Mblk-1 and anti-phosphorylated Mblk-1 antibodies to analyze the distribution and phosphorylation of Mblk-1 in the brains of pupal and adult workers. Mblk-1 was preferentially expressed in the lKCs in both pupal and adult worker brains. In contrast, some Mblk-1 was phosphorylated almost exclusively in the pupal stages, and phosphorylated Mblk-1 was preferentially expressed in the MB neuroblasts and lKCs in pupal brains. Immunofluorescence studies revealed that both Mblk-1 and phosphorylated Mblk-1 are located in both the cytoplasm and nuclei of the lKC somata in the pupal and adult worker brains. These findings suggest that Mblk-1 plays a role in the lKCs in both pupal and adult stages and that phosphorylated Mblk-1 has pupal stage-specific functions in the MB neuroblasts and lKCs in the honey bee brain.
Assuntos
Abelhas/crescimento & desenvolvimento , Encéfalo/metabolismo , Ecdisteroides/metabolismo , Fatores de Transcrição/metabolismo , Animais , Abelhas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Sistema de Sinalização das MAP Quinases , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/metabolismo , Especificidade de Órgãos , FosforilaçãoRESUMO
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Assuntos
Radiação Cósmica/efeitos adversos , Voo Espacial , Raios Ultravioleta , Animais , Astronautas , Carcinogênese/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Meio Ambiente Extraterreno , Instabilidade Genômica/efeitos da radiação , Humanos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Substâncias Protetoras/farmacologia , Doses de Radiação , Exposição à Radiação/efeitos adversos , Exposição à Radiação/prevenção & controle , Estresse Psicológico , Ausência de PesoRESUMO
Reproductive strategy is an important aspect of biological diversity. In tardigrades, several reproductive modes, including sexual reproduction, are known. However, tardigrade mating behavior has been observed only rarely in most species, and in some cases, especially in the freely ovipositing eutardigrades, remains entirely unknown. In the present study, we cultured two sexually reproducing tardigrade species that lay eggs freely, Paramacrobiotus sp. TYO strain and Macrobiotus shonaicus, to investigate and compare their courtship, mating, and chromosome morphology. Mating behavior was observed and recorded in both species. The entire mating sequence, including courtship, was categorized into five discrete steps common to two species, as follows: [1] Tracking: the male tracks and orientates toward the female; [2] Touching: the male makes contact with the cloaca of the female; [3] Standstill: the female ceases movement until male ejaculation is complete; [4] Ejaculation: the male curls its caudal end and ejaculates into the cloaca from close range; [5] Contraction: the female contracts its ventral side after ejaculation to capture spermatozoa deposited in the external environment in close proximity to the cloaca. Some notable differences between the two species were observed in the steps 3-4. First, oviposition was observed at 40 min in Paramacrobiotus sp. TYO strain, and a few days after mating in M. shonaicus, respectively. Comparisons of chromosome morphology before and after mating indicated that oocytes are arrested at metaphase I in both species. Spermatozoa attach to the interior of the chorion of laid eggs.
Assuntos
Reprodução/fisiologia , Comportamento Sexual Animal , Tardígrados/fisiologia , Animais , Cromossomos/genética , Feminino , Masculino , Oócitos , Oviposição , EspermatozoidesRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0183522.].
RESUMO
Unlike mammals, Xenopus laevis tadpoles possess high ability to regenerate their lost organs. In amphibians, the main source of regenerated tissues is lineage-restricted tissue stem cells, but the mechanisms underlying induction, maintenance and differentiation of these stem/progenitor cells in the regenerating organs are poorly understood. We previously reported that interleukin-11 (il-11) is highly expressed in the proliferating cells of regenerating Xenopus tadpole tails. Here, we show that il-11 knockdown (KD) shortens the regenerated tail length, and the phenotype is rescued by forced-il-11-expression in the KD tadpoles. Moreover, marker genes for undifferentiated notochord, muscle, and sensory neurons are downregulated in the KD tadpoles, and the forced-il-11-expression in intact tadpole tails induces expression of these marker genes. Our findings demonstrate that il-11 is necessary for organ regeneration, and suggest that IL-11 plays a key role in the induction and maintenance of undifferentiated progenitors across cell lineages during Xenopus tail regeneration. Xenopus laevis tadpoles have maintained their ability to regenerate various organs. Here, the authors show that interleukin-11 is necessary for organ regeneration, by inducing and maintaining undifferentiated progenitors across cell lineages during Xenopus tail regeneration.
Assuntos
Interleucina-11/fisiologia , Regeneração , Cauda/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Marcadores Genéticos , Interleucina-11/genética , Interleucina-11/metabolismo , Cauda/citologia , XenopusRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0176809.].
RESUMO
Tardigrada, a phylum of meiofaunal organisms, have been at the center of discussions of the evolution of Metazoa, the biology of survival in extreme environments, and the role of horizontal gene transfer in animal evolution. Tardigrada are placed as sisters to Arthropoda and Onychophora (velvet worms) in the superphylum Panarthropoda by morphological analyses, but many molecular phylogenies fail to recover this relationship. This tension between molecular and morphological understanding may be very revealing of the mode and patterns of evolution of major groups. Limnoterrestrial tardigrades display extreme cryptobiotic abilities, including anhydrobiosis and cryobiosis, as do bdelloid rotifers, nematodes, and other animals of the water film. These extremophile behaviors challenge understanding of normal, aqueous physiology: how does a multicellular organism avoid lethal cellular collapse in the absence of liquid water? Meiofaunal species have been reported to have elevated levels of horizontal gene transfer (HGT) events, but how important this is in evolution, and particularly in the evolution of extremophile physiology, is unclear. To address these questions, we resequenced and reassembled the genome of H. dujardini, a limnoterrestrial tardigrade that can undergo anhydrobiosis only after extensive pre-exposure to drying conditions, and compared it to the genome of R. varieornatus, a related species with tolerance to rapid desiccation. The 2 species had contrasting gene expression responses to anhydrobiosis, with major transcriptional change in H. dujardini but limited regulation in R. varieornatus. We identified few horizontally transferred genes, but some of these were shown to be involved in entry into anhydrobiosis. Whole-genome molecular phylogenies supported a Tardigrada+Nematoda relationship over Tardigrada+Arthropoda, but rare genomic changes tended to support Tardigrada+Arthropoda.
Assuntos
Extremófilos/genética , Regulação da Expressão Gênica , Proteoma/metabolismo , Tardígrados/genética , Animais , Sequência de Bases , Mapeamento Cromossômico/veterinária , DNA/química , DNA/metabolismo , Dessecação , Extremófilos/crescimento & desenvolvimento , Extremófilos/fisiologia , Perfilação da Expressão Gênica/veterinária , Transferência Genética Horizontal , Ligação Genética , Tamanho do Genoma , Estudo de Associação Genômica Ampla/veterinária , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Família Multigênica , Filogenia , Proteoma/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Tardígrados/crescimento & desenvolvimento , Tardígrados/fisiologiaRESUMO
Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability.
RESUMO
In insect brains, the mushroom bodies (MBs, a higher center) comprise intrinsic neurons, termed Kenyon cells (KCs). We previously showed that the honeybee (Apis mellifera L.) MBs comprise four types of KCs, in addition to the previously known three types of KCs: class I large-type KCs (lKCs), class I small-type KCs (sKCs) and class II KCs, novel class I 'middle-type' KCs (mKCs), which are characterized by the preferential expression of a gene, termed mKast. Although mKast was originally discovered during the search for genes whose expression is enriched in the optic lobes (OLs) in the worker brain, subsequent analysis revealed that the gene is expressed in an mKC-preferential manner in the MBs. To gain more insights into the function of mKast in the honeybee brain, we here performed expression analysis of mKast and immunohistochemistry of the mKast protein. Prominent mKast expression was first detected in the brain after the P7 pupal stage. In addition, mKast was expressed almost selectively in the brain, suggesting its late pupal and adult specific functions in the brain. Immunohistochemistry revealed that mKast-like immunoreactivity is detected in several regions in the worker brain: inside and around the MB calyces, at the outer edges of the OL lobula, at the outer surface of and posterior to the antennal lobes (ALs), along the dorsal midline of the anterior brain and at the outer surface of the subesophageal ganglions (SOG). mKast-like immunoreactivities in the MBs, OLs, ALs and SOG were due to the corresponding neurons, while mKast-like immunoreactivities beneath/between the MB calyces were assumed to most likely correspond to the lateral/medial neurosecretory cells.