RESUMO
Gastrulation is a critical event whose molecular mechanisms are thought to be conserved among vertebrates. However, the morphological movement during gastrulation appears to be divergent across species, making it difficult to discuss the evolution of the process. Previously, we proposed a novel amphibian gastrulation model, the "subduction and zippering (S&Z) model". In this model, the organizer and the prospective neuroectoderm are originally localized in the blastula's blastocoel roof, and these embryonic regions move downward to make physical contact of their inner surfaces with each other at the dorsal marginal zone. The developmental stage when contact between the head organizer and the anterior-most neuroectoderm is established is called "anterior contact establishment (ACE)." After ACE, the A-P body axis elongates posteriorly. According to this model, the body axis is derived from limited regions of the dorsal marginal zone at ACE. To investigate this possibility, we conducted stepwise tissue deletions using Xenopus laevis embryos and revealed that the dorsal one-third of the marginal zone had the ability to form the complete dorsal structure by itself. Furthermore, a blastocoel roof explant of the blastula, which should contain the organizer and the prospective neuroectoderm in the S&Z model, autonomously underwent gastrulation and formed the complete dorsal structure. Collectively, these results are consistent with the S&Z gastrulation model and identify the embryonic region sufficient for construction of the complete dorsal structure. Finally, by comparing amphibian gastrulation to gastrulation of protochordates and amniotes, we discuss the gastrulation movement evolutionarily conserved among chordates.
Assuntos
Cordados , Gastrulação , Animais , Xenopus laevis , Gástrula , Blástula , Estudos Prospectivos , MesodermaRESUMO
Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior ß-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian ß-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.