Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 10(1): 10094, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572094

RESUMO

FZR1/CDH1 is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of FZR1 during mitotic cell cycle. Although the critical role of FZR1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological significance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of FZR1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK-phosphorylation sites of FZR1. Although ablation of FZR1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of FZR1 phosphorylation, male juvenile germ cells entered meiosis normally but failed to enter meiosis II or form differentiated spermatids. In aged testis, male mutant germ cells were overall abolished, showing Sertoli cell-only phenotype. In contrast, female mutants showed apparently normal progression of meiosis. The present study demonstrated that phosphorylation of FZR1 is required for temporal regulation of APC/C activity at meiosis II entry, and for maintenance of spermatogonia, which raised an insight into the sexual dimorphism of FZR1-regulation in germ cells.


Assuntos
Proteínas Cdh1/metabolismo , Meiose/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas Cdh1/fisiologia , Proteínas de Ciclo Celular/metabolismo , Técnicas de Introdução de Genes/métodos , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Blood ; 129(14): 1958-1968, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28143883

RESUMO

FZR1 (fizzy-related protein homolog; also known as CDH1 [cell division cycle 20 related 1]) functions in the cell cycle as a specific activator of anaphase-promoting complex or cyclosome ubiquitin ligase, regulating late mitosis, G1 phase, and activation of the G2-M checkpoint. FZR1 has been implicated as both a tumor suppressor and oncoprotein, and its precise contribution to carcinogenesis remains unclear. Here, we examined the role of FZR1 in tumorigenesis and cancer therapy by analyzing tumor models and patient specimens. In an Fzr1 gene-trap mouse model of B-cell acute lymphoblastic leukemia (B-ALL), mice with Fzr1-deficient B-ALL survived longer than those with Fzr1-intact disease, and sensitivity of Fzr1-deficient B-ALL cells to DNA damage appeared increased. Consistently, conditional knockdown of FZR1 sensitized human B-ALL cell lines to DNA damage-induced cell death. Moreover, multivariate analyses of reverse-phase protein array of B-ALL specimens from newly diagnosed B-ALL patients determined that a low FZR1 protein expression level was an independent predictor of a longer remission duration. The clinical benefit of a low FZR1 expression level at diagnosis was no longer apparent in patients with relapsed B-ALL. Consistent with this result, secondary and tertiary mouse recipients of Fzr1-deficient B-ALL cells developed more progressive and radiation-resistant disease than those receiving Fzr1-intact B-ALL cells, indicating that prolonged inactivation of Fzr1 promotes the development of resistant clones. Our results suggest that reduction of FZR1 increases therapeutic sensitivity of B-ALL and that transient rather than tonic inhibition of FZR1 may be a therapeutic strategy.


Assuntos
Proteínas Cdh1 , Dano ao DNA , Regulação Leucêmica da Expressão Gênica , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animais , Proteínas Cdh1/biossíntese , Proteínas Cdh1/genética , Morte Celular , Humanos , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
3.
Oncotarget ; 7(32): 51044-51058, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27409837

RESUMO

The HIPPO pathway is an evolutionary conserved regulator of organ size that controls both cell proliferation and death. This pathway has an important role in mediating cell death in response to oxidative stress through the inactivation of Yes-associated protein (YAP) and inhibition of anti-oxidant gene expression. Cells exposed to oxidative stress induce the phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2 at serine 51 (eIF2αP), a modification that leads to the general inhibition of mRNA translation initiation. Under these conditions, increased eIF2αP facilitates the mRNA translation of activating transcription factor 4 (ATF4), which mediates either cell survival and adaptation or cell death under conditions of severe stress. Herein, we demonstrate a functional connection between the HIPPO and eIF2αP-ATF4 pathways under oxidative stress. We demonstrate that ATF4 promotes the stabilization of the large tumor suppressor 1 (LATS1), which inactivates YAP by phosphorylation. ATF4 inhibits the expression of NEDD4.2 and WWP1 mRNAs under pro-oxidant conditions, which encode ubiquitin ligases mediating the proteasomal degradation of LATS1. Increased LATS1 stability is required for the induction of cell death under oxidative stress. Our data reveal a previously unidentified ATF4-dependent pathway in the induction of cell death under oxidative stress via the activation of LATS1 and HIPPO pathway.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Morte Celular/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/fisiologia , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Serina/metabolismo
4.
Nat Commun ; 7: 11961, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27358050

RESUMO

The Hippo pathway regulates the self-renewal and differentiation of various adult stem cells, but its role in cell fate determination and differentiation during liver development remains unclear. Here we report that the Hippo pathway controls liver cell lineage specification and proliferation separately from Notch signalling, using mice and primary hepatoblasts with liver-specific knockout of Lats1 and Lats2 kinase, the direct upstream regulators of YAP and TAZ. During and after liver development, the activation of YAP/TAZ induced by loss of Lats1/2 forces hepatoblasts or hepatocytes to commit to the biliary epithelial cell (BEC) lineage. It increases BEC and fibroblast proliferation by up-regulating TGFß signalling, but suppresses hepatoblast to hepatocyte differentiation by repressing Hnf4α expression. Notably, oncogenic YAP/TAZ activation in hepatocytes induces massive p53-dependent cell senescence/death. Together, our results reveal that YAP/TAZ activity levels govern liver cell differentiation and proliferation in a context-dependent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fígado/embriologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Aciltransferases , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Senescência Celular , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Cultura Primária de Células , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Proteínas de Sinalização YAP
6.
PLoS One ; 10(2): e0118662, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723520

RESUMO

In budding yeast, the Mitotic Exit Network (MEN) regulates anaphase promoting complex/cyclosome (APC/C) via the Dbf2-Cdc14 signaling cascade. Dbf2 kinase phosphorylates and activates Cdc14 phosphatase, which removes the inhibitory phosphorylation of the APC/C cofactor Cdh1. Although each component of the MEN was highly conserved during evolution, there is presently no evidence supporting direct phosphorylation of CDC14 by large tumor suppressor kinase 1 (LATS1), the human counterpart of Dbf2; hence, it is unclear how LATS1 regulates APC/C. Here, we demonstrate that LATS1 phosphorylates the Thr7 (T7) residue of the APC/C component CDC26 directly. Nocodazole-induced phosphorylation of T7 was reduced by knockdown of LATS1 and LATS2 in HeLa cells, indicating that both of these kinases contribute to the phosphorylation of CDC26 in vivo. The T7 residue of CDC26 is critical for its interaction with APC6, a tetratricopeptide repeat-containing subunit of APC/C, and mutation of this residue to Asp (T7D) reduced the interaction of CDC26 with APC6. Replacement of endogenous CDC26 in HeLa cells with exogenous phosphor-mimic T7D-mutated CDC26 increased the elution size of APC/C subunits in a gel filtration assay, implying a change in the APC/C assembly upon phosphorylation of CDC26. Furthermore, T7D-mutated CDC26 promoted the ubiquitination of polo-like kinase 1, a well-known substrate of APC/C. Overall, these results suggest that LATS1/2 are novel kinases involved in APC/C phosphorylation and indicate a direct regulatory link between LATS1/2 and APC/C.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/química , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína
7.
EMBO J ; 32(11): 1543-55, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23644383

RESUMO

Actin cytoskeletal damage induces inactivation of the oncoprotein YAP (Yes-associated protein). It is known that the serine/threonine kinase LATS (large tumour suppressor) inactivates YAP by phosphorylating its Ser127 and Ser381 residues. However, the events downstream of actin cytoskeletal changes that are involved in the regulation of the LATS-YAP pathway and the mechanism by which LATS differentially phosphorylates YAP on Ser127 and Ser381 in vivo have remained elusive. Here, we show that cyclic AMP (cAMP)-dependent protein kinase (PKA) phosphorylates LATS and thereby enhances its activity sufficiently to phosphorylate YAP on Ser381. We also found that PKA activity is involved in all contexts previously reported to trigger the LATS-YAP pathway, including actin cytoskeletal damage, G-protein-coupled receptor activation, and engagement of the Hippo pathway. Inhibition of PKA and overexpression of YAP cooperate to transform normal cells and amplify neural progenitor pools in developing chick embryos. We also implicate neurofibromin 2 as an AKAP (A-kinase-anchoring protein) scaffold protein that facilitates the function of the cAMP/PKA-LATS-YAP pathway. Our study thus incorporates PKA as novel component of the Hippo pathway.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Embrião de Galinha , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Expressão Gênica , Genes Supressores de Tumor , Via de Sinalização Hippo , Camundongos , Modelos Moleculares , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/genética , Fosforilação , Gravidez , Proteínas Serina-Treonina Quinases/genética , Serina , Proteínas de Sinalização YAP
8.
PLoS One ; 8(5): e63001, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696789

RESUMO

BACKGROUND: Male germ cell RacGTPase activating protein (MgcRacGAP) is an important regulator of the Rho family GTPases--RhoA, Rac1, and Cdc42--and is indispensable in cytokinesis and cell cycle progression. Inactivation of RhoA by phosphorylated MgcRacGAP is an essential step in cytokinesis. MgcRacGAP is also involved in G1-S transition and nuclear transport of signal transducer and activator of transcription 3/5 (STAT3/5). Expression of MgcRacGAP is strictly controlled in a cell cycle-dependent manner. However, the underlying mechanisms have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Using MgcRacGAP deletion mutants and the fusion proteins of full-length or partial fragments of MgcRacGAP to mVenus fluorescent protein, we demonstrated that MgcRacGAP is degraded by the ubiquitin-proteasome pathway in the late M to G1 phase via APC(CDH1). We also identified the critical region for destruction located in the C-terminus of MgcRacGAP, AA537-570, which is necessary and sufficient for CDH1-mediated MgcRacGAP destruction. In addition, we identified a PEST domain-like structure with charged residues in MgcRacGAP and implicate it in effective ubiquitination of MgcRacGAP. CONCLUSIONS/SIGNIFICANCE: Our findings not only reveal a novel mechanism for controlling the expression level of MgcRacGAP but also identify a new target of APC(CDH1). Moreover our results identify a C-terminal region AA537-570 of MgcRacGAP as its degron.


Assuntos
Caderinas/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Animais , Antígenos CD , Western Blotting , Caderinas/genética , Proteínas Cdh1/genética , Ciclo Celular , Linhagem Celular , Citometria de Fluxo , Fase G1/genética , Fase G1/fisiologia , Proteínas Ativadoras de GTPase/genética , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Células NIH 3T3 , Ligação Proteica , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/fisiologia
9.
Cancer Sci ; 104(7): 880-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23557174

RESUMO

The epithelial-mesenchymal transition (EMT) contributes to the malignant progression of cancer cells including acquisition of the ability to undergo metastasis. However, whereas EMT-related transcription factors (EMT-TF) are known to play an important role in the malignant progression of epithelial tumors, their role in mesenchymal tumors remains largely unknown. We show that expression of the gene for Twist2 is downregulated in human osteosarcoma and correlates inversely with tumorigenic potential in mouse osteosarcoma. Forced expression of Twist2 in highly tumorigenic murine osteosarcoma cells induced a slight inhibition of cell growth in vitro but markedly suppressed tumor formation in vivo. Conversely, knockdown of Twist2 in osteosarcoma cells with a low tumorigenic potential promoted tumor formation in vivo, suggesting that Twist2 functions as a tumor suppressor in osteosarcoma cells. Furthermore, Twist2 induced expression of fibulin-5, which has been reported as a tumor suppressor. Medium conditioned by mouse osteosarcoma cells overexpressing Twist2 inhibited expression of the MMP9 gene as well as invasion in mouse embryonic fibroblasts, and forced expression of Twist2 in osteosarcoma cells suppressed MMP9 gene expression in tumor tissue. Data from the present study suggest that Twist2 inhibits formation of a microenvironment conducive to tumor growth and thereby attenuates tumorigenesis in osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Genes Supressores de Tumor , Osteossarcoma/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética , Animais , Neoplasias Ósseas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteossarcoma/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Regulação para Cima
10.
Biochem Biophys Res Commun ; 430(2): 757-62, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23206702

RESUMO

Differentiation of placental trophoblast stem (TS) cells to trophoblast giant (TG) cells is accompanied by transition from a mitotic cell cycle to an endocycle. Here, we report that Cdh1, a regulator of the anaphase-promoting complex/cyclosome (APC/C), negatively regulates mitotic entry upon the mitotic/endocycle transition. TS cells derived from homozygous Cdh1 gene-trapped (Cdh1(GT/GT)) murine embryos accumulated mitotic cyclins and precociously entered mitosis after induction of TS cell differentiation, indicating that Cdh1 is required for the switch from mitosis to the endocycle. Furthermore, the Cdh1(GT/GT) TS cells and placenta showed aberrant expression of placental differentiation markers. These data highlight an important role of Cdh1 in the G2/M transition during placental differentiation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Células-Tronco/citologia , Trofoblastos/citologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placenta/citologia , Gravidez
11.
PLoS One ; 7(11): e50621, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226335

RESUMO

Osteosarcoma is a high-grade malignant bone tumor that manifests ingravescent clinical behavior. The intrinsic events that confer malignant properties on osteosarcoma cells have remained unclear, however. We previously established two lines of mouse osteosarcoma cells: AX cells, which are able to form tumors in syngeneic mice, and AXT cells, which were derived from such tumors and acquired an increased tumorigenic capacity during tumor development. We have now identified Igf2 mRNA-binding protein3 (Imp3) as a key molecule responsible for this increased tumorigenicity of AXT cells in vivo. Imp3 is consistently up-regulated in tumors formed by AX cells, and its expression in these cells was found to confer malignant properties such as anchorage-independent growth, loss of contact inhibition, and escape from anoikis in vitro. The expression level of Imp3 also appeared directly related to tumorigenic ability in vivo which is the critical determination for tumor-initiating cells. The effect of Imp3 on tumorigenicity of osteosarcoma cells did not appear to be mediated through Igf2-dependent mechanism. Our results implicate Imp3 as a key regulator of stem-like tumorigenic characteristics in osteosarcoma cells and as a potential therapeutic target for this malignancy.


Assuntos
Osteossarcoma/patologia , Proteínas de Ligação a RNA/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Terapia de Alvo Molecular , Osteossarcoma/tratamento farmacológico , Fenótipo
12.
J Cell Biol ; 197(5): 625-41, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22641346

RESUMO

In the mitotic exit network of budding yeast, Dbf2 kinase phosphorylates and regulates Cdc14 phosphatase. In contrast, no phosphatase substrates of LATS1/WARTS kinase, the mammalian equivalent of Dbf2, has been reported. To address this discrepancy, we performed phosphoproteomic screening using LATS1 kinase. Screening identified MYPT1 (myosin phosphatase-targeting subunit 1) as a new substrate for LATS1. LATS1 directly and preferentially phosphorylated serine 445 (S445) of MYPT1. An MYPT1 mutant (S445A) failed to dephosphorylate Thr 210 of PLK1 (pololike kinase 1), thereby activating PLK1. This suggests that LATS1 promotes MYPT1 to antagonize PLK1 activity. Consistent with this, LATS1-depleted HeLa cells or fibroblasts from LATS1 knockout mice showed increased PLK1 activity. We also found deoxyribonucleic acid (DNA) damage-induced LATS1 activation caused PLK1 suppression via the phosphorylation of MYPT1 S445. Furthermore, LATS1 knockdown cells showed reduced G2 checkpoint arrest after DNA damage. These results indicate that LATS1 phosphorylates a phosphatase as does the yeast Dbf2 and demonstrate a novel role of LATS1 in controlling PLK1 at the G2 DNA damage checkpoint.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Quinase 1 Polo-Like
13.
J Biol Chem ; 287(11): 7896-906, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22262832

RESUMO

We previously showed that depletion of the retinoblastoma protein (RB) induces down-regulation of the adhesion molecule E-cadherin and thereby triggers the epithelial-mesenchymal transition. To further characterize the effect of RB inactivation on the phenotype of cancer cells, we have now examined RB expression in human breast cancer cell lines and clinical specimens. We found that RB-inactive cells exhibit a mesenchymal-like morphology and are highly invasive. We also found that ZEB proteins, transcriptional repressors of the E-cadherin gene, are markedly up-regulated in these cells in a manner sensitive to the miR-200 family of microRNAs. Moreover, depletion of ZEB in RB-inactive cells suppressed cell invasiveness and proliferation and induced epithelial marker expression. These results implicate ZEB in induction of the epithelial-mesenchymal transition, as well as in maintenance of the mesenchymal phenotype in RB-inactive cells. We also developed a screening program for inhibitors of ZEB1 expression and thereby identified several cyclin-dependent kinase inhibitors that blocked both ZEB1 expression and RB phosphorylation. Together, our findings suggest that RB inactivation contributes to tumor progression not only through loss of cell cycle control but also through up-regulation of ZEB expression and induction of an invasive phenotype.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteína do Retinoblastoma/biossíntese , Fatores de Transcrição/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/biossíntese , Caderinas/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Proteína do Retinoblastoma/genética , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
14.
Mol Cancer Res ; 10(3): 454-68, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22228819

RESUMO

Osteosarcoma is the most frequent, nonhematopoietic, primary malignant tumor of bone. Histopathologically, osteosarcoma is characterized by complex mixtures of different cell types with bone formation. The role of environmental factors in the formation of such a complicated tissue structure as osteosarcoma remains to be elucidated. Here, a newly established murine osteosarcoma model was used to clarify the roles of environmental factors such as fibroblast growth factor-2 (Fgf2) or leukemia-inhibitory factor (Lif) in the maintenance of osteosarcoma cells in an immature state. These factors were highly expressed in tumor environmental stromal cells, rather than in osteosarcoma cells, and they potently suppressed osteogenic differentiation of osteosarcoma cells in vitro and in vivo. Further investigation revealed that the hyperactivation of extracellular signal-regulated kinase (Erk)1/2 induced by these factors affected in the process of osteosarcoma differentiation. In addition, Fgf2 enhanced both proliferation and migratory activity of osteosarcoma cells and modulated the sensitivity of cells to an anticancer drug. The results of the present study suggest that the histology of osteosarcoma tumors which consist of immature tumor cells and pathologic bone formations could be generated dependent on the distribution of such environmental factors. The combined blockade of the signaling pathways of several growth factors, including Fgf2, might be useful in controlling the aggressiveness of osteosarcoma.


Assuntos
Neoplasias Ósseas/patologia , Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator Inibidor de Leucemia/farmacologia , Camundongos , Invasividade Neoplásica , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteossarcoma/enzimologia , Osteossarcoma/genética , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Mol Cell ; 45(1): 123-31, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22178396

RESUMO

Both the DNA damage response (DDR) and epigenetic mechanisms play key roles in the implementation of senescent phenotypes, but very little is known about how these two mechanisms are integrated to establish senescence-associated gene expression. Here we show that, in senescent cells, the DDR induces proteasomal degradation of G9a and GLP, major histone H3K9 mono- and dimethyltransferases, through Cdc14B- and p21(Waf1/Cip1)-dependent activation of APC/C(Cdh1) ubiquitin ligase, thereby causing a global decrease in H3K9 dimethylation, an epigenetic mark for euchromatic gene silencing. Interestingly, induction of IL-6 and IL-8, major players of the senescence-associated secretory phenotype (SASP), correlated with a decline of H3K9 dimethylation around the respective gene promoters and knockdown of Cdh1 abolished IL-6/IL-8 expression in senescent cells, suggesting that the APC/C(Cdh1)-G9a/GLP axis plays crucial roles in aspects of senescent phenotype. These findings establish a role for APC/C(Cdh1) and reveal how the DDR integrates with epigenetic processes to induce senescence-associated gene expression.


Assuntos
Senescência Celular , Dano ao DNA , Histona-Lisina N-Metiltransferase/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/fisiologia , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases , Histonas/metabolismo , Humanos , Metilação , Transdução de Sinais
16.
Am J Pathol ; 179(3): 1471-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21787741

RESUMO

Gestational choriocarcinoma is a malignant trophoblastic tumor. The development of novel molecular-targeted therapies is needed to reduce the toxicity of current multiagent chemotherapy and to treat successfully the chemoresistant cases. The molecular mechanisms underlying choriocarcinoma tumorigenesis remain uncharacterized, however, and appropriate choriocarcinoma animal models have not yet been developed. In this study, we established a choriocarcinoma model by inoculating mice with induced-choriocarcinoma cell-1 (iC³-1) cells, generated from HTR8/SVneo human trophoblastic cells retrovirally transduced with activated H-RAS (HRASV12). The iC³-1 cells exhibited constitutive activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways and developed into lethal tumors in all inoculated mice. Histopathological analysis revealed that the tumors consisted of two distinct types of cells, reminiscent of syncytiotrophoblasts and cytotrophoblasts, as seen in the human choriocarcinoma. The tumors expressed HLA-G and cytokeratin (trophoblast markers) and hCG (a choriocarcinoma marker). Comparative analysis of gene expression profiles between iC³-1 cells and parental HTR8/SVneo cells revealed that iC³-1 cells expressed matrix metalloproteinases, epithelial-mesenchymal transition-related genes, and SOX3 at higher levels than parental trophoblastic cells. Administration of SOX3-specific short-hairpin RNA decreased SOX3 expression and attenuated the tumorigenic activity of iC³-1 cells, suggesting that SOX3 overexpression might be critically involved in the pathogenesis of choriocarcinoma. Our murine model represents a potent new tool for studying the pathogenesis and treatment of choriocarcinoma.


Assuntos
Coriocarcinoma/etiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Uterinas/etiologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Coriocarcinoma/metabolismo , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Fatores de Transcrição SOXB1/metabolismo , Transdução Genética , Transplante Heterólogo , Neoplasias Uterinas/metabolismo
17.
Cancer Sci ; 102(5): 967-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21255192

RESUMO

Various key cell cycle components, especially G0/G1 regulators, have effects not only on cell proliferation but also on cell differentiation. Cdh1, one of the co-activators that maintain anaphase-promoting complex/cyclosome activity, plays a crucial role in the mitotic phase, but has recently been identified as a G0/G1 regulator, suggesting that the role of Cdh1 in cell differentiation. Here, we generated Cdh1 conditional gene-trap mice to examine Cdh1 functions in adult tissues by overcoming the embryonic lethality of Cdh1 homozygous gene-trap mice. We focused on the hematopoietic system and found that Cdh1-deficient mice exhibited a general decrease in mature lineage progenitor cells and a significant increase in short-term hematopoietic stem cells. This phenomenon became conspicuous by irradiation shortly after Cdh1 downregulation, suggesting that Cdh1 regulates the pool sizes of the hematopoietic stem cells and mature lineage progenitor cells by protecting cells from genotoxic stress. We also found that the irradiation-induced G2/M checkpoint was defective in Cdh1-deficient BM cells, causing the loss of stem/progenitor cells. This is the first report revealing Cdh1 function in adult hematopoiesis and showing a role of Cdh1 in a G2/M checkpoint regulation in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem da Célula , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Divisão Celular , Fase G2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Mol Cell Biol ; 30(16): 3994-4005, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530197

RESUMO

Cdh1 is an activator of the anaphase-promoting complex/cyclosome and contributes to mitotic exit and G(1) maintenance by targeting cell cycle proteins for degradation. However, Cdh1 is expressed and active in postmitotic or quiescent cells, suggesting that it has functions other than cell cycle control. Here, we found that homozygous Cdh1 gene-trapped (Cdh1(GT/GT)) mouse embryonic fibroblasts (MEFs) and Cdh1-depleted HeLa cells reduced stress fiber formation significantly. The GTP-bound active Rho protein was apparently decreased in the Cdh1-depleted cells. The p190 protein, a major GTPase-activating protein for Rho, accumulated both in Cdh1(GT/GT) MEFs and in Cdh1-knockdown HeLa cells. Cdh1 formed a physical complex with p190 and stimulated the efficient ubiquitination of p190, both in in vitro and in vivo. The motility of Cdh1-depleted HeLa cells was impaired; however, codepletion of p190 rescued the migration activity of these cells. Moreover, Cdh1(GT/GT) embryos exhibited phenotypes similar to those observed for Rho-associated kinase I and II knockout mice: eyelid closure delay and disruptive architecture with frequent thrombus formation in the placental labyrinth layer, respectively. Furthermore, the p190 protein accumulated in the Cdh1(GT/GT) embryonic tissues. Our data revealed a novel function for Cdh1 as a regulator of Rho and provided insights into the role of Cdh1 in cell cytoskeleton organization and cell motility.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Repressoras/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Sequência de Bases , Proteínas Cdh1 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Primers do DNA/genética , Proteínas Ativadoras de GTPase/química , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/química , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos , RNA Interferente Pequeno/genética , Proteínas Repressoras/química , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/deficiência , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
19.
Oncogene ; 24(34): 5287-98, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16007220

RESUMO

Drosophila tumor suppressor WARTS (Wts) is an evolutionally conserved serine / threonine kinase and participates in a signaling complex that regulates both proliferation and apoptosis to ensure the proper size and shape of the fly. Human counterparts of this complex have been found to be frequently downregulated or mutated in cancers. WARTS, a human homolog of Wts, is also known as tumor suppressor and mitotic regulator, but its molecular implications in tumorigenesis are still obscure. Here, we show that WARTS binds via its C-terminus to the PDZ domain of a proapoptotic serine protease Omi / HtrA2. Depletion of WARTS inhibited Omi / HtrA2-mediated cell death, whereas overexpression of WARTS promoted this process. Furthermore, WARTS can enhance the protease activity of Omi / HtrA2 both in vivo and in vitro. Activation of Omi / HtrA2-mediated cell death is thus a potential mechanism for the tumor suppressive activity of WARTS.


Assuntos
Apoptose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Serina Endopeptidases/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Células Cultivadas , Citosol/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Proteínas Serina-Treonina Quinases/metabolismo , Transfecção , Proteínas Supressoras de Tumor/metabolismo
20.
J Biol Chem ; 280(19): 19166-76, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15753095

RESUMO

The tumor suppressor p53 functions as a transcriptional activator to induce cell cycle arrest and apoptosis in response to DNA damage. Although p53 was also shown to mediate apoptosis in a manner independent of its transactivation activity, the mechanism and conditions that trigger such cell death have remained largely unknown. We have now shown that inhibition of RNA polymerase II-mediated transcription by alpha-amanitin or RNA interference induced p53-dependent apoptosis. Inhibition of pol II-mediated transcription resulted in down-regulation of p21Cip1, which was caused by both transcriptional suppression and protein degradation, despite eliciting p53 accumulation, allowing the cells to progress into S phase and then to undergo apoptosis. This cell death did not require the transcription of p53 target genes and was preceded by translocation of the accumulated p53 to mitochondria. Our data thus suggested that blockade of pol II-mediated transcription induced p53 accumulation in mitochondria and was the critical factor for eliciting p53-dependent but transcription-independent apoptosis.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Adenoviridae/genética , Amanitinas/química , Amanitinas/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21 , Dano ao DNA , Regulação para Baixo , Fase G1 , Humanos , Immunoblotting , Microscopia de Fluorescência , Fosforilação , Plasmídeos/metabolismo , Transporte Proteico , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S , Frações Subcelulares , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA