Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17523, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248016

RESUMO

Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39294537

RESUMO

The Saimaa ringed seal (Pusa hispida saimensis) is a subspecies of ringed seal, landlocked in Lake Saimaa, Finland. The small population of less than 500 seals is facing many human-induced threats, including chemical contaminants. Mercury, in particular, has previously been suggested to be one of the chemicals affecting the viability of this endangered population. We analysed mercury concentrations from placentas and lanugo pup tissues (blubber, brain, kidney, liver, and muscle) to determine current prenatal exposure levels. These pups were found dead in or near birth lairs and were less than 3 months old. Additionally, we used threshold values available in the literature to estimate the potential mercury toxicity to the Saimaa ringed seal. We also determined selenium concentrations for its potential to alleviate the adverse effects of mercury. We further supplemented our study with brain samples collected from various seal age classes. These seals were found dead by either natural causes or by being caught in gillnets. The analysed chemicals were present in all tissues. For lanugo pups, mercury concentrations were the highest in the kidney and liver, whereas the highest selenium to mercury molar ratio was observed in placentas. The toxicity evaluation suggested that, in severe cases, mercury may cause adverse effects in lanugo and older pups. In these cases, the selenium concentrations were low and selenium to mercury ratio was below 1:1 threshold ratio and thus unlikely to provide adequate protection from the adverse effects of mercury. Furthermore, adverse effects are more likely to occur in adult seals, as mercury bioaccumulates, leading to higher concentrations in older individuals. Placental mercury concentrations correlated to those in the livers and muscle tissues of lanugo pups. This, together with the fact that placentas can be collected non-invasively and in good condition, provides a potential novel method for biomonitoring mercury exposure in Saimaa ringed seals.

3.
J Comp Physiol B ; 194(4): 473-492, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678156

RESUMO

The increased limb bone density documented previously for aquatic tetrapods has been proposed to be an adaptation to overcome buoyancy during swimming and diving. It can be achieved by increasing the amount of bone deposition or by reducing the amount of bone resorption, leading to cortical thickening, loss of medullary cavity, and compaction of trabecular bone. The present study examined the effects of locomotor habit, body size, and phylogeny on the densitometric, cross-sectional, and biomechanical traits of femoral diaphysis and neck in terrestrial, semiaquatic, and aquatic carnivores, and in terrestrial and semiaquatic rodents (12 species) by using peripheral quantitative computed tomography, three-point bending, and femoral neck loading tests. Groupwise differences were analyzed with the univariate generalized linear model and the multivariate linear discriminant analysis supplemented with hierarchical clustering. While none of the individual features could separate the lifestyles or species adequately, the combinations of multiple features produced very good or excellent classifications and clusterings. In the phocid seals, the aquatic niche allowed for lower femoral bone mineral densities than expected based on the body mass alone. The semiaquatic mammals mostly had high bone mineral densities compared to the terrestrial species, which could be considered an adaptation to overcome buoyancy during swimming and shallow diving. Generally, it seems that different osteological properties at the levels of mineral density and biomechanics could be compatible with the adaptation to aquatic, semiaquatic, or terrestrial niches.


Assuntos
Tamanho Corporal , Densidade Óssea , Fêmur , Roedores , Animais , Roedores/fisiologia , Roedores/anatomia & histologia , Fêmur/fisiologia , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Colo do Fêmur/anatomia & histologia , Colo do Fêmur/fisiologia , Colo do Fêmur/diagnóstico por imagem , Carnívoros/fisiologia , Carnívoros/anatomia & histologia , Diáfises/fisiologia , Diáfises/anatomia & histologia , Diáfises/diagnóstico por imagem , Locomoção , Fenômenos Biomecânicos , Filogenia , Tomografia Computadorizada por Raios X , Masculino , Especificidade da Espécie
4.
Ecol Evol ; 13(10): e10608, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869427

RESUMO

Studies on host-parasite systems that have experienced distributional shifts, range fragmentation, and population declines in the past can provide information regarding how parasite community richness and genetic diversity will change as a result of anthropogenic environmental changes in the future. Here, we studied how sequential postglacial colonization, shifts in habitat, and reduced host population sizes have influenced species richness and genetic diversity of Corynosoma (Acanthocephala: Polymorphidae) parasites in northern European marine, brackish, and freshwater seal populations. We collected Corynosoma population samples from Arctic, Baltic, Ladoga, and Saimaa ringed seal subspecies and Baltic gray seals, and then applied COI barcoding and triple-enzyme restriction-site associated DNA (3RAD) sequencing to delimit species, clarify their distributions and community structures, and elucidate patterns of intraspecific gene flow and genetic diversity. Our results showed that Corynosoma species diversity reflected host colonization histories and population sizes, with four species being present in the Arctic, three in the Baltic Sea, two in Lake Ladoga, and only one in Lake Saimaa. We found statistically significant population-genetic differentiation within all three Corynosoma species that occur in more than one seal (sub)species. Genetic diversity tended to be high in Corynosoma populations originating from Arctic ringed seals and low in the landlocked populations. Our results indicate that acanthocephalan communities in landlocked seal populations are impoverished with respect to both species and intraspecific genetic diversity. Interestingly, the loss of genetic diversity within Corynosoma species seems to have been less drastic than in their seal hosts, possibly due to their large local effective population sizes resulting from high infection intensities and effective intra-host population mixing. Our study highlights the utility of genomic methods in investigations of community composition and genetic diversity of understudied parasites.

5.
Ecol Evol ; 13(7): e10264, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404699

RESUMO

Seasonal changes in diel haul-out patterns of the lacustrine Saimaa ringed seal (Pusa hispida saimensis) were studied using a combination of satellite telemetry and camera traps during 2007-2015. We found the haul-out activity patterns to vary seasonally. Our results show that during the ice-covered winter period before the seals start their annual molt, the peak in haul-out generally occurs at midnight. Similarly, during the postmolt season of summer and autumn when the lake is free of ice, the haul-out is concentrated in the early hours of the morning. In contrast, over the spring molting period, Saimaa ringed seals tend to haul out around the clock. The spring molt is also the only period when a slight difference in haul-out behavior between the sexes is observed, with females having a haul-out peak at nighttime while the males have a less visible diel pattern. According to our results, the diel haul-out patterns of Saimaa ringed seals are similar to the ones of marine ringed seals. Gathering information on haul-out activity is important in order to safeguard the natural patterns of Saimaa ringed seals in areas that are prone to disturbance from human activities.

6.
Ecol Evol ; 13(1): e9720, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699566

RESUMO

The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.

7.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236699

RESUMO

Wildlife camera traps and crowd-sourced image material provide novel possibilities to monitor endangered animal species. The massive data volumes call for automatic methods to solve various tasks related to population monitoring, such as the re-identification of individual animals. The Saimaa ringed seal (Pusa hispida saimensis) is an endangered subspecies only found in Lake Saimaa, Finland, and is one of the few existing freshwater seal species. Ringed seals have permanent pelage patterns that are unique to each individual and that can be used for the identification of individuals. A large variation in poses, further exacerbated by the deformable nature of seals, together with varying appearance and low contrast between the ring pattern and the rest of the pelage makes the Saimaa ringed seal re-identification task very challenging, providing a good benchmark by which to evaluate state-of-the-art re-identification methods. Therefore, we make our Saimaa ringed seal image (SealID) dataset (N = 57) publicly available for research purposes. In this paper, the dataset is described, the evaluation protocol for re-identification methods is proposed, and the results for two baseline methods-HotSpotter and NORPPA-are provided. The SealID dataset has been made publicly available.


Assuntos
Focas Verdadeiras , Animais , Espécies em Perigo de Extinção , Finlândia , Água Doce
8.
Mol Ecol ; 31(18): 4593-4606, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726520

RESUMO

Host-specialist parasites of endangered large vertebrates are in many cases more endangered than their hosts. In particular, low host population densities and reduced among-host transmission rates are expected to lead to inbreeding within parasite infrapopulations living on single host individuals. Furthermore, spatial population structures of directly-transmitted parasites should be concordant with those of their hosts. Using population genomic approaches, we investigated inbreeding and population structure in a host-specialist seal louse (Echinophthirius horridus) infesting the Saimaa ringed seal (Phoca hispida saimensis), which is endemic to Lake Saimaa in Finland, and is one of the most endangered pinnipeds in the world. We conducted genome resequencing of pairs of lice collected from 18 individual Saimaa ringed seals throughout the Lake Saimaa complex. Our analyses showed high genetic similarity and inbreeding between lice inhabiting the same individual seal host, indicating low among-host transmission rates. Across the lake, genetic differentiation among individual lice was correlated with their geographic distance, and assignment analyses revealed a marked break in the genetic variation of the lice in the middle of the lake, indicating substantial population structure. These findings indicate that movements of Saimaa ringed seals across the main breeding areas of the fragmented Lake Saimaa complex may in fact be more restricted than suggested by previous population-genetic analyses of the seals themselves.


Assuntos
Ftirápteros , Focas Verdadeiras , Animais , Água Doce , Endogamia , Ftirápteros/genética , Densidade Demográfica
10.
Int J Parasitol Parasites Wildl ; 15: 255-261, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34277335

RESUMO

Three subspecies of the ringed seal (Pusa hispida) are found in northeastern Europe: P. h. botnica in the Baltic Sea, P. h saimensis in Lake Saimaa in Finland, and P. h. ladogensis in Lake Ladoga in Russia. We investigated the poorly-known cestode helminth communities of these closely related but ecologically divergent subspecies using COI barcode data. Our results show that, while cestodes from the Baltic Sea represent Schistocephalus solidus, all worms from the two lakes are identified as Ligula intestinalis, a species that has previously not been reported from seals. The observed shift in cestode communities appears to be driven by differential availability of intermediate fish host species in marine vs. freshwater environments. Both observed cestode species normally infect fish-eating birds, so further work is required to elucidate the health and conservation implications of cestode infections in European ringed seals, whether L. intestinalis occurs also in marine ringed seals, and whether the species is able to reproduce in seal hosts. In addition, a deep barcode divergence found within S. solidus suggests the presence of cryptic diversity under this species name.

11.
PLoS One ; 16(7): e0254254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264981

RESUMO

Taiga bean goose (Anser fabalis fabalis) is an endangered subspecies that breeds sporadically in remote habitats in the arctic and boreal zones. Due to its elusive behaviour, there is a paucity of knowledge on the behaviour of taiga bean goose during the breeding season, and survey methods for monitoring numbers in the breeding areas are lacking. Camera traps are a useful tool for wildlife monitoring, particularly when there is a need for non-invasive methods due to the shy nature of the species. In this study, we tested the use of camera traps to investigate seasonal and diel activity patterns of taiga bean goose in Finland over two successive breeding seasons, 2018 and 2019. We did this by modelling counts of geese from images with generalized linear and additive mixed models. The camera type (cameras placed by experts specialized in bean goose ecology vs randomly placed cameras) did not influence the count of taiga bean goose (p = 0.386). However, the activity varied significantly by region, Julian day, time of day and temperature, with the study site (individual peatland) and year adding substantial random variation and uncertainty in the counts. Altogether, the best fitting model explained nearly 70% of the variation in taiga bean goose activity. The peak in activity occurred about a month later in the southernmost region compared to the more northern regions, which may indicate behaviours related to migration rather than breeding and moulting. Our results show that long-term monitoring with game camera traps provide a potential unobtrusive approach for studying the behavioural patterns of taiga bean goose and can increase our ecological knowledge of this little-known subspecies. The results can be applied to planning of the annual censuses and finding the optimal time frame for their execution.


Assuntos
Gansos , Animais , Estações do Ano , Taiga
12.
Front Microbiol ; 12: 642543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935998

RESUMO

While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.

13.
Nat Ecol Evol ; 4(8): 1095-1104, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514167

RESUMO

The effective size of a population (Ne), which determines its level of neutral variability, is a key evolutionary parameter. Ne can substantially depart from census sizes of present-day breeding populations (NC) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent Ne for 17 pinniped species represented by 36 population samples (total n = 458 individuals). Ne estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with NC ([Formula: see text] = 0.59; P = 0.0002). Ne/NC ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species' ecological and life-history variables such as breeding habitat. Residual variation in Ne/NC, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary NC than would be expected from their long-term Ne. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.


Assuntos
Caniformia , Animais , Evolução Biológica , Variação Genética , Genoma , Densidade Demográfica
14.
PLoS One ; 14(3): e0214269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901354

RESUMO

Reliable population estimates are fundamental to the conservation of endangered species. We evaluate here the use of photo-identification (photo-ID) and mark-recapture techniques for estimating the population size of the endangered Saimaa ringed seal (Phoca hispida saimensis). Photo-ID data based on the unique pelage patterns of individuals were collected by means of camera traps and boat-based surveys during the molting season in two of the species' main breeding areas, over a period of five years in the Pihlajavesi basin and eight years in the Haukivesi basin. An open model approach provided minimum population estimates for these two basins. The results indicated high survival rates and site fidelity among the adult seals. More accurate estimates can be obtained in the future by increasing the surveying effort both spatially and temporally. The method presented here proved effective for evaluating population size objectively, whereas the results of the current snow lair censuses are dependent on varying winter conditions, for instance. We therefore suggest that a photo-ID-based non-invasive mark-recapture method should be used for estimating Saimaa ringed seal abundances in order to ensure reliable, transparent population monitoring under changing climatic conditions.


Assuntos
Muda , Phoca/crescimento & desenvolvimento , Gravação em Vídeo/métodos , Animais , Mudança Climática , Espécies em Perigo de Extinção , Feminino , Finlândia , Masculino , Phoca/anatomia & histologia , Densidade Demográfica
15.
PLoS One ; 14(1): e0210266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30608980

RESUMO

Climate change, together with increasing human activity, poses a threat to the breeding success of endangered landlocked ringed seals (Phoca hispida saimensis). In this study, we estimated the spatial ecology of Saimaa ringed seals during the breeding season in the ice-covered period of December-April. The telemetry data on tagged seals (n = 20), with a total of 25 separate tracking periods and birth lair locations (n = 59) of non-tagged seals, were studied to estimate the movement ecology and breeding density. The movements of the ringed seals were more restricted during the ice-covered season; the total home range size (average 7.4 km2) in winter was 13 times smaller than that in summer. Individual tagged seals occupied an average of 5 ± 3 SD subnivean haul outs (snow lairs or ice cavities), and the mean distance between the haul outs was 1.6 ± 1.1 SD km (range 0.2-5.9 km). Moreover, our data indicated that ringed seal females likely exhibited breeding time avoidance of each other's core areas, which may indicate some degree of territoriality. This was supported by the findings that the core areas (mean 1.2 km2) of tagged adult females (n = 9), did not overlap with each other. Also data on non-tagged seals showed that females did not give birth to pups within the core area radius of other parturient females. This study, together with earlier findings on the home ranges of nursed pups and perinatal mortality rates, has implications into land usage planning in Lake Saimaa by highlighting the need of undisturbed area between seal lairs and anthropogenic disturbances.


Assuntos
Migração Animal/fisiologia , Cruzamento , Mudança Climática , Focas Verdadeiras/fisiologia , Estações do Ano , Animais , Ecossistema , Feminino , Masculino , Telemetria
16.
Mov Ecol ; 3(1): 33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401285

RESUMO

BACKGROUND: Identification of key foraging habitats of aquatic top predators is essential for designing effective management and conservation strategies. The Baltic ringed seal (Phoca hispida botnica) interacts with anthropogenic activities and knowledge of its spatial ecology is needed for planning population management and mitigating interactions with coastal fisheries. We investigated habitat use and foraging habitats of ringed seals (n = 26) with satellite telemetry in the northern Baltic Sea during autumn, which is important time for foraging for ringed seals. We used first passage time (FPT) approach to identify the areas of high residency corresponding to foraging areas. RESULTS: Tracked seals showed considerable movement; mean (±SD) home ranges (95 % adaptive local nearest-neighbour convex hull, a-LoCoH) were 8030 ± 4796 km(2). Two seals moved randomly and foraging areas could not be identified for them. The majority (24/26) of the studied seals occupied 1-6 main foraging areas, where they spent 47 ± 22 % of their total time. Typically the foraging areas of individuals had a mean distance of 254 ± 194 km. Most of the seals (n = 17) were "long-range foragers" which occupied several spatially remote foraging areas (mean distance 328 ± 180 km) or, in the case of two individuals, did not concentrate foraging to any particular area. The other seals (n = 9) were "local foragers" having only one foraging area or the mean distance between several areas was shorter (67 ± 26 km). Foraging areas of all seals were characterised by shallow bathymetry (median ± SD: 13 ± 49 m) and proximity to the mainland (10 ± 14 km), partly overlapping with protected areas and coastal fisheries. CONCLUSIONS: Our results indicate that in general the ringed seals range over large areas and concentrate feeding to different-often remote-areas during the open water season. Therefore, removal of individuals near the fishing gear may not be a locally effective method to mitigate seal depredation. Overlap of foraging areas with protected areas indicate that management of key foraging and resting habitats could to some extent be implemented within the existing network of marine protected areas.

17.
Environ Sci Technol ; 49(19): 11808-16, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26372071

RESUMO

The endangered Saimaa ringed seal (Pusa hispida saimensis) is exposed to relatively high concentrations of mercury (Hg) in freshwaters poor in selenium (Se), a known antagonist of Hg. The impact of age and sex on the bioaccumulation of Hg and Se was studied by analyzing liver, muscle, and hair samples from seals of different age groups. Adult females were found to accumulate significantly more Hg in the liver (with ca. 60% as HgSe), and less Hg in the muscles compared to adult males, which may be explained by accelerated metabolism during gestation and lactation. In adult seals, molar Se:Hg ratios in the muscles fall below one, which is considered a threshold for the emergence of adverse effects. As a result, Saimaa ringed seals may be at risk of developing health and reproductive problems. According to mass balance calculations, the pups are exposed to considerable amounts (µg/d) of mercury during gestation, although lactation is their main exposure route. In lanugo pups, Hg concentrates in the hair, and molting serves as a main detoxification route. For other age groups, demethylation followed by the formation of HgSe is the main detoxification route, and the demethylation capability develops in pups by the time of weaning.


Assuntos
Mercúrio/farmacocinética , Focas Verdadeiras/metabolismo , Selênio/farmacocinética , Fatores Etários , Animais , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Feminino , Finlândia , Água Doce/química , Cabelo/química , Cabelo/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Mercúrio/metabolismo , Mercúrio/toxicidade , Músculos/química , Músculos/metabolismo , Selênio/metabolismo , Selênio/toxicidade , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
18.
PLoS One ; 10(5): e0127510, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993534

RESUMO

Developing methods to reduce the incidental catch of non-target species is important, as by-catch mortality poses threats especially to large aquatic predators. We examined the effectiveness of a novel device, a "seal sock", in mitigating the by-catch mortality of seals in coastal fyke net fisheries in the Baltic Sea. The seal sock developed and tested in this study was a cylindrical net attached to the fyke net, allowing the seals access to the surface to breathe while trapped inside fishing gear. The number of dead and live seals caught in fyke nets without a seal sock (years 2008-2010) and with a sock (years 2011-2013) was recorded. The seals caught in fyke nets were mainly juveniles. Of ringed seals (Phoca hispida botnica) both sexes were equally represented, while of grey seals (Halichoerus grypus) the ratio was biased (71%) towards males. All the by-caught seals were dead in the fyke nets without a seal sock, whereas 70% of ringed seals and 11% of grey seals survived when the seal sock was used. The seal sock proved to be effective in reducing the by-catch mortality of ringed seals, but did not perform as well with grey seals.


Assuntos
Conservação dos Recursos Naturais/métodos , Focas Verdadeiras , Animais , Países Bálticos , Feminino , Pesqueiros , Masculino , Oceanos e Mares
19.
Ecol Evol ; 4(17): 3420-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25535558

RESUMO

Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea 'mainland' and two the 'aquatic islands' composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control-region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post-colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.

20.
BMC Ecol ; 14: 22, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25005257

RESUMO

BACKGROUND: Small, genetically uniform populations may face an elevated risk of extinction due to reduced environmental adaptability and individual fitness. Fragmentation can intensify these genetic adversities and, therefore, dispersal and gene flow among subpopulations within an isolated population is often essential for maintaining its viability. Using microsatellite and mtDNA data, we examined genetic diversity, spatial differentiation, interregional gene flow, and effective population sizes in the critically endangered Saimaa ringed seal (Phoca hispida saimensis), which is endemic to the large but highly fragmented Lake Saimaa in southeastern Finland. RESULTS: Microsatellite diversity within the subspecies (HE = 0.36) ranks among the lowest thus far recorded within the order Pinnipedia, with signs of ongoing loss of individual heterozygosity, reflecting very low effective subpopulation sizes. Bayesian assignment analyses of the microsatellite data revealed clear genetic differentiation among the main breeding areas, but interregional structuring was substantially weaker in biparentally inherited microsatellites (FST = 0.107) than in maternally inherited mtDNA (FST = 0.444), indicating a sevenfold difference in the gene flow mediated by males versus females. CONCLUSIONS: Genetic structuring in the population appears to arise from the joint effects of multiple factors, including small effective subpopulation sizes, a fragmented lacustrine habitat, and behavioural dispersal limitation. The fine-scale differentiation found in the landlocked Saimaa ringed seal is especially surprising when contrasted with marine ringed seals, which often exhibit near-panmixia among subpopulations separated by hundreds or even thousands of kilometres. Our results demonstrate that population structures of endangered animals cannot be predicted based on data on even closely related species or subspecies.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Genética Populacional , Focas Verdadeiras/genética , Distribuição Animal , Animais , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , Feminino , Finlândia , Água Doce , Fluxo Gênico , Masculino , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA