Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639580

RESUMO

InGaAs/InP-based negative-feedback avalanche diodes (NFADs) have been demonstrated to be an excellent option for photon detection at telecom wavelengths in quantum communication applications, where photon arrival times are random. However, it is well-known that the operation of NFADs at low temperatures (193 K or below) is crucial to minimize the effects of afterpulsing and high dark count rates (DCRs). In this work, we present a new versatile readout electronics system with active afterpulse suppression that also offers flexible cooling options. Through the characterization of two NFAD detectors from Princeton Lightwave, Inc. and a thorough evaluation of our electronics' performance under various operating conditions, we demonstrate the effectiveness of this readout system in improving the performance of NFAD-based photon detectors. At the optimal bias for NFADs, our electronics were able to significantly reduce the afterpulsing probability by a factor of 200 for dead times ranging from 5 to 20 µs following each detection event. This helps to keep the total DCRs at around 100 counts per second or less for a 20 µs hold-off time. The versatility of our detection system makes NFADs a cost-effective alternative to more complex detectors, such as superconducting nanowire single-photon detectors, in the research of long-distance quantum communications and low-noise single photon detectors at telecommunication wavelengths.

2.
Opt Express ; 28(14): 20943-20953, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680144

RESUMO

The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum interference phenomena, and is central to many applications in quantum technologies. The fundamental effect appears when two independent and indistinguishable photons are superimposed on a beam splitter, which achieves a complete suppression of coincidences between the two output ports. Much less studied, however, is when the fields share coherence (continuous-wave lasers) or mode envelope properties (pulsed lasers). In this case, we expect the existence of two distinct and concurrent HOM interference regimes: the traditional HOM dip on the coherence length time scale, and a structured HOM interference pattern on the pulse length scale. We develop a theoretical framework that describes HOM interference for laser fields having arbitrary temporal waveforms and only partial overlap in time. We observe structured HOM interference from a continuous-wave laser via fast polarization modulation and time-resolved single photon detection fast enough to resolve these structured HOM dips.

3.
Opt Express ; 27(23): 34416-34433, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878489

RESUMO

Entangled measurement is a crucial tool in quantum technology. We propose a new entanglement measure of multi-mode detection, which estimates the amount of entanglement that can be created in a measurement. To illustrate the proposed measure, we perform quantum tomography of a two-mode detector that is comprised of two superconducting nanowire single photon detectors. Our method utilizes coherent states as probe states, which can be easily prepared with accuracy. Our work shows that a separable state such as a coherent state is enough to characterize a potentially entangled detector. We investigate the entangling capability of the detector in various settings. Our proposed measure verifies that the detector makes an entangled measurement under certain conditions, and reveals the nature of the entangling properties of the detector. Since the precise characterization of a detector is essential for applications in quantum information technology, the experimental reconstruction of detector properties along with the proposed measure will be key features in future quantum information processing.

4.
Opt Express ; 27(26): 37214-37223, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878505

RESUMO

Despite its widespread use in fiber optics, encoding quantum information in photonic time-bin states is usually considered impractical for free-space quantum communication as turbulence-induced spatial distortion impedes the analysis of time-bin states at the receiver. Here, we demonstrate quantum key distribution using time-bin photonic states distorted by turbulence and depolarization during free-space transmission. Utilizing a novel analyzer apparatus, we observe stable quantum bit error ratios of 5.32 %, suitable for generating secure keys, despite significant wavefront distortions and polarization fluctuations across a 1.2 km channel. This shows the viability of time-bin quantum communication over long-distance free-space channels, which will simplify direct fiber/free-space interfaces and enable new approaches for practical free-space quantum communication over multi-mode, turbulent, or depolarizing channels.

5.
Opt Express ; 25(2): 573-586, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157947

RESUMO

Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity's characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA