Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(16)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39053508

RESUMO

Objective.To investigate different dosimetric aspects of90Y-IsoPet™ intratumoral therapy in canine soft tissue sarcomas, model the spatial spread of the gel post-injection, evaluate absorbed dose to clinical target volumes, and assess dose distributions and treatment efficacy.Approach.Six canine cases treated with90Y-IsoPet™ for soft tissue sarcoma at the Veterinary Health Center, University of Missouri are analyzed in this retrospective study. The dogs received intratumoral IsoPet™ injections, following a grid pattern to achieve a near-uniform dose distribution in the clinical target volume. Two dosimetry methods were performed retrospectively using the Monte Carlo toolkit OpenTOPAS: imaging-based dosimetry obtained from post-injection PET/CT scans, and stylized phantom-based dosimetry modeled from the planned injection points to the gross tumor volume. For the latter, a Gaussian parameter with variable sigma was introduced to reflect the spatial spread of IsoPet™. The two methods were compared using dose-volume histograms (DVHs) and dose homogeneity, allowing an approximation of the closest sigma for the spatial spread of the gel post-injection. In addition, we compared Monte Carlo-based dosimetry with voxel S-value (VSV)-based dosimetry to investigate the dosimetric differences.Main results.Imaging-based dosimetry showed differences between Monte Carlo and VSV calculations in tumor high-density areas with higher self-absorption. Stylized phantom-based dosimetry indicated a more homogeneous target dose with increasing sigma. The sigma approximation of the90Y-IsoPet™ post-injection gel spread resulted in a median sigma of approximately 0.44 mm across all cases to reproduce the dose heterogeneity observed in Monte Carlo calculations.Significance.The results indicate that dose modeling based on planned injection points can serve as a first-order approximation for the delivered dose in90Y-IsoPet™ therapy for canine soft tissue sarcomas. The dosimetry evaluation highlights the non-uniformity of absorbed doses despite the gel spread, emphasizing the importance of considering tumor dose heterogeneity in treatment evaluation. Our findings suggest that using Monte Carlo for dose calculation seems more suitable for this type of tumor where high-density areas might play an important role in dosimetry.


Assuntos
Método de Monte Carlo , Radiometria , Cães , Animais , Dosagem Radioterapêutica , Radioisótopos de Ítrio/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Imagens de Fantasmas , Sarcoma/radioterapia , Sarcoma/veterinária
2.
Radiat Res ; 200(6): 523-530, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014573

RESUMO

High dose rate radiation has gained considerable interest recently as a possible avenue for increasing the therapeutic window in cancer radiation treatment. The sparing of healthy tissue at high dose rates relative to conventional dose rates, while maintaining tumor control, has been termed the FLASH effect. Although the effect has been validated in animal models using multiple radiation sources, it is not yet well understood. Here, we demonstrate a new experimental platform for quantifying oxidative damage to protein sidechains in solution as a function of radiation dose rate and oxygen availability using liquid chromatography mass spectrometry. Using this reductionist approach, we show that for both X-ray and electron sources, isolated peptides in solution are oxidatively modified to different extents as a function of both dose rate and oxygen availability. Our method provides an experimental platform for exploring the parameter space of the dose rate effect on oxidative changes to proteins in solution.


Assuntos
Neoplasias , Animais , Estresse Oxidativo , Peptídeos , Oxigênio , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA