Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138673

RESUMO

Porous carbon materials have been widely used to remove pollutants from the liquid-phase streams. However, their limited pore properties could be a major problem. In this work, the effects of post-washing methods (i.e., water washing and acid washing) on the textural characteristics of the resulting biochar and activated carbon products from pineapple peel biomass were investigated in the carbonization and CO2 activation processes. The experiments were set at an elevated temperature (i.e., 800 °C) holding for 30 min. It was found that the enhancement in pore property reached about a 50% increase rate, increasing from 569.56 m2/g for the crude activated carbon to the maximal BET surface area of 843.09 m2/g for the resulting activated carbon by water washing. The resulting activated carbon materials featured the microporous structures but also were characteristic of the mesoporous solids. By contrast, the enhancement in the increase rate by about 150% was found in the resulting biochar products. However, there seemed to be no significant variations in pore property with post-washing methods. Using the energy dispersive X-ray spectroscopy (EDS) and the Fourier Transform infrared spectroscopy (FTIR) analyses, it showed some oxygen-containing functional groups or complexes, potentially posing the hydrophilic characters on the surface of the resulting carbon materials.

2.
Materials (Basel) ; 16(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138813

RESUMO

To valorize livestock manure, the present study investigated the production of biochar from cow dung (CD) by microwave pyrolysis. The pore properties and chemical characteristics of CD and CD-based biochar products were found to correlate with the process parameters like microwave power (300-1000 W) and residence time (5-20 min). The findings indicated that CD is an excellent biomass based on the richness of lignocellulosic constituents from the results of proximate analysis and thermogravimetric analysis (TGA). Higher calorific values were obtained at mild microwave conditions, giving the maximal enhancement factor 139% in comparison with the calorific value of CD (18.97 MJ/kg). Also, it can be concluded that the biochar product obtained at 800 W for a holding time of 5 min had the maximal BET surface area of 127 m2/g and total pore volume of 0.104 cm3/g, which were microporous and mesoporous in the nitrogen adsorption-desorption adsorption analysis. On the other hand, the CD-based biochar contained oxygen-containing functional groups and inorganic minerals based on the spectroscopic analyses by Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS), thus featuring to be prone to hydrophilicity in aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA