Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
ACS Sens ; 9(1): 455-463, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38234004

RESUMO

Selective detection of biomarkers at low concentrations in blood is crucial for the clinical diagnosis of many diseases but remains challenging. In this work, we aimed to develop an ultrasensitive immunoassay that can detect biomarkers in serum with an attomolar limit of detection (LOD). We proposed a sandwich-type heterogeneous immunosensor in a 3 × 3 well array format by integrating a resonant waveguide grating (RWG) substrate with upconversion nanoparticles (UCNPs). UCNPs were used to label a target biomarker captured by capture antibody molecules immobilized on the surface of the RWG substrate, and the RWG substrate was used to enhance the upconversion luminescence (UCL) of UCNPs through excitation resonance. The LOD of the immunosensor was greatly reduced due to the increased UCL of UCNPs and the reduction of nonspecific adsorption of detection antibody-conjugated UCNPs on the RWG substrate surface by coating the RWG substrate surface with a carboxymethyl dextran layer. The immunosensor exhibited an extremely low LOD [0.24 fg/mL (9.1 aM)] and wide detection range (1 fg/mL to 100 pg/mL) in the detection of cardiac troponin I (cTnI). The cTnI concentrations in human serum samples collected at different times during cyclophosphamide, epirubicin, and 5-fluorouracil (CEF) chemotherapy in a breast cancer patient were measured by an immunosensor, and the results showed that the CEF chemotherapy did cause cardiotoxicity in the patient. Having a higher number of wells in such an array-based biosensor, the sensor can be developed as a high-throughput diagnostic tool for clinically important biomarkers.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Humanos , Troponina I , Imunoensaio/métodos , Nanopartículas/química , Epirubicina , Biomarcadores
2.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267492

RESUMO

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630940

RESUMO

Due to their diverse and unique physical properties, miktoarm star copolymers (µ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 °C. By achieving high coupling efficiency (χc = 0.95), we obtained mid-chain functionalized PDMS-VBAm-PDMS polymers with benzylic alcohols. Interestingly, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis revealed the insertion of only two VBA coupling agents (m = 2). Subsequently, the PDMS-VBA2-PDMS products underwent mid-chain extensions using ε-caprolactone (ε-CL) through ring-opening polymerization (ROP) with an efficient organo-catalyst at 40 °C, resulting in the synthesis of novel (PDMS)2-µ-(PCL)2 µ-SCPs. Eventually, novel (PDMS)2-µ-(PCL)2 µ-SCPs were obtained. The obtained PDMS-µ-PCL µ-SCPs were further subjected to examination of their solid-state self-assembly through small-angle X-ray scattering (SAXS) experiments. Notably, various nanostructures, including lamellae and hexagonally packed cylinders, were observed with a periodic size of approximately 15 nm. As a result, we successfully developed a simple and effective reaction combination (Є) strategy (i.e., SA ATRC-Є-ROP) for the synthesis of well-defined PDMS-µ-PCL µ-SCPs. This approach may open up new possibilities for fabricating nanostructures from siloxane-based materials.

4.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569744

RESUMO

This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.


Assuntos
Dióxido de Carbono , Polímeros , Metalocenos , Porosidade
5.
Soft Matter ; 19(25): 4706-4716, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314312

RESUMO

This study describes the preparation of hydrogen bonding connected micelles, consisting of a poly(styrene-alt-(para-hydroxyphenylmaleimide)) [poly(S-alt-pHPMI)] core and a poly(4-vinylpyridine) (P4VP) derivative shell in a selective solvent. The aim was to modify hydrogen bonding interaction sites at the core/shell interface by synthesizing P4VP derivatives in three different sequences, namely, P4VP homopolymers, PS-co-P4VP random copolymers, and block copolymers. TEM images showed the successful self-assembly of poly(S-alt-pHPMI)/PS-co-P4VP inter-polymer complexes into spherical structures. To dissolve the core structures, 1,4-dibromobutane was used as a cross-linking agent to tighten the PS-co-P4VP shell. The morphologies, particle sizes, hydrogen bonding, cross-linking reaction, and core dissolution were confirmed by TEM, DLS, FTIR, and AFM analyses. Poly(S-alt-pHPMI)/PS41-r-P4VP59 hydrogen bonding connected micelles, cross-linked micelles, and hollow spheres were larger and more irregular than poly(S-alt-pHPMI)/P4VP inter-polymer complexes due to the random copolymer architecture and the decrease in intermolecular hydrogen bonds. However, poly(S-alt-pHPMI)/PS68-b-P4VP32 resulted in rod- or worm-like structures after core dissolution.

6.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240313

RESUMO

In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g-1 and better capacitance stability of 97% over 5000 cycles at 10 A g-1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.


Assuntos
Aminas , Polímeros , Polímeros/química , Adsorção , Antracenos
7.
Small ; 19(30): e2302509, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026662

RESUMO

Aerogels have provided a significant platform for passive radiation-enabled thermal regulation, arousing extensive interest due to their capabilities of radiative cooling or heating. However, there still remains challenge of developing functionally integrated aerogels for sustainable thermal regulation in both hot and cold environment. Here, Janus structured MXene-nanofibrils aerogel (JMNA) is rationally designed via a facile and efficient way. The achieved aerogel presents the characteristic of high porosity (≈98.2%), good mechanical strength (tensile stress of ≈2 MPa, compressive stress of ≈115 kPa), and macroscopic shaping property. Based on the asymmetric structure, the JMNA with switchable functional layers can alternatively enable passive radiative heating and cooling in winter and summer, respectively. As a proof of concept, JMNA can function as a switchable thermal-regulated roof to effectively enable the inner house model to maintain >25 °C in winter and <30 °C in hot summer. This design of Janus structured aerogels with compatible and expandable capabilities is promising to widely benefit the low-energy thermal regulation in changeable climate.

8.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049996

RESUMO

We have successfully synthesized two types of two-dimensional conjugated microporous polymers (CMPs), Py-BSU and TBN-BSU CMPs, by using the Sonogashira cross-coupling reaction of BSU-Br2 (2,8-Dibromothianthrene-5,5',10,10'-Tetraoxide) with Py-T (1,3,6,8-Tetraethynylpyrene) and TBN-T (2,7,10,15-Tetraethynyldibenzo[g,p]chrysene), respectively. We characterized the chemical structure, morphology, physical properties, and potential applications of these materials using various analytical instruments. Both Py-BSU and TBN-BSU CMPs showed high thermal stability with thermal decomposition temperatures (Td10) up to 371 °C and char yields close to 48 wt%, as determined by thermogravimetric analysis (TGA). TBN-BSU CMPs exhibited a higher specific surface area and porosity of 391 m2 g-1 and 0.30 cm3 g-1, respectively, due to their large micropore and mesopore structure. These CMPs with extended π-conjugated frameworks and high surface areas are promising organic electroactive materials that can be used as electrode materials for supercapacitors (SCs) and gas adsorption. Our experimental results demonstrated that the TBN-BSU CMP electrode had better electrochemical characteristics with a longer discharge time course and a specific capacitance of 70 F g-1. Additionally, the electrode exhibited an excellent capacitance retention rate of 99.9% in the 2000-cycle stability test. The CO2 uptake capacity of TBN-BSU CMP and Py-BSU CMP were 1.60 and 1.45 mmol g-1, respectively, at 298 K and 1 bar. These results indicate that the BSU-based CMPs synthesized in this study have potential applications in electrical testing and CO2 capture.

9.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050297

RESUMO

Herein, we report the efficient preparation of π-electron-extended triazine-based covalent organic framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule, as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited remarkable porosity, excellent crystallinity, high surface area of 724 m2 g-1, and massive thermal stability with a char yield of 63.41%. The TFP-TPTPh COF demonstrated an excellent removal efficiency of RhB from water in 60 min when used as an adsorbent, and its maximum adsorption capacity (Qm) of 480 mg g-1 is among the highest Qm values for porous polymers ever to be recorded. In addition, the TFP-TPTPh COF showed a remarkable photocatalytic degradation of RhB dye molecules with a reaction rate constant of 4.1 × 10-2 min-1 and an efficiency of 97.02% under ultraviolet-visible light irradiation. Furthermore, without additional co-catalysts, the TFP-TPTPh COF displayed an excellent photocatalytic capacity for reducing water to generate H2 with a hydrogen evolution rate (HER) of 2712 µmol g-1 h-1. This highly active COF-based photocatalyst appears to be a useful material for dye removal from water, as well as solar energy processing and conversion.

10.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112038

RESUMO

Porous organic polymers (POPs) have plenteous exciting features due to their attractive combination of microporosity with π-conjugation. Nevertheless, electrodes based on their pristine forms suffer from severe poverty of electrical conductivity, precluding their employment within electrochemical appliances. The electrical conductivity of POPs may be significantly improved and their porosity properties could be further customized by direct carbonization. In this study, we successfully prepared a microporous carbon material (Py-PDT POP-600) by the carbonization of Py-PDT POP, which was designed using a condensation reaction between 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PDA-4NH2) and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-4CHO) in the presence of dimethyl sulfoxide (DMSO) as a solvent. The obtained Py-PDT POP-600 with a high nitrogen content had a high surface area (up to 314 m2 g-1), high pore volume, and good thermal stability based on N2 adsorption/desorption data and a thermogravimetric analysis (TGA). Owing to the good surface area, the as-prepared Py-PDT POP-600 showed excellent performance in CO2 uptake (2.7 mmol g-1 at 298 K) and a high specific capacitance of 550 F g-1 at 0.5 A g-1 compared with the pristine Py-PDT POP (0.24 mmol g-1 and 28 F g-1).

11.
Macromol Rapid Commun ; 44(10): e2200910, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017474

RESUMO

This work synthesizes a new bifunctional furan derivative (PDMS-FBZ) through a sequence of hydrosilylation of nadic anhydride (ND) with polydimethylsiloxane (PDMS), reaction of the product with p-aminophenol to form PDMS-ND-OH, and its subsequent Mannich reaction with furfurylamine and CH2 O. Then, the main chain-type copolymer PDMS-DABZ-DDSQ is prepared through a Diels-Alder (DA) cycloaddition of PDMS-FBZ with the bismaleimide-functionalized double-decker silsesquioxane derivative DDSQ-BMI. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirm the structure of this PDMS-DABZ-DDSQ copolymer; differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) reveal it to have high flexibility and high thermal stability (Tg = 177 °C; Td10 = 441 °C; char yield = 60.1 wt%); contact angle measurements reveal a low surface free energy (18.18 mJ m-2 ) after thermal ring-opening polymerization, because the inorganic PDMS and DDSQ units are dispersed well, as revealed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This PDMS-DABZ-DDSQ copolymer possesses reversible properties arising from the DA and retro-DA reactions, suggesting its possible application as a functional high-performance material.


Assuntos
Benzoxazinas , Polímeros , Reação de Cicloadição , Benzoxazinas/química , Polímeros/química , Microscopia Eletrônica de Varredura , Dimetilpolisiloxanos
12.
Chemistry ; 29(30): e202300538, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36932999

RESUMO

Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.

13.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904335

RESUMO

This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1'-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g-1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g-1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics.

14.
Int J Bioprint ; 9(1): 647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844238

RESUMO

336MXenes, as highly electronegative and conductive two-dimensional nanomaterials, are extensively studied for their use in sensors and flexible electronics. In this study, near-field electrospinning was used to prepare a new poly(vinylidene difluoride) (PVDF)/Ag nanoparticle (AgNP)/MXene composite nanofiber film as a self-powered flexible human motion-sensing device. The composite film displayed highly piezoelectric properties with the presence of MXene. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy revealed that the intercalated MXene in the composite nanofibers was evenly spread out, which not only prevented the aggregation of MXene but also enabled the composite materials to form self-reduced AgNPs. The prepared PVDF/AgNP/MXene fibers displayed exceptional stability and excellent output performance, enabling their use for energy harvesting and powering light-emitting diodes. The doping of MXene/AgNPs increased the electrical conductivity of the PVDF material, improved its piezoelectric properties, and enhanced the piezoelectric constant of PVDF piezoelectric fibers, thereby allowing the production of flexible, sustainable, wearable, and self-powered electrical devices.

15.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768824

RESUMO

We synthesized two hybrid organic-inorganic porous polymers (HPP) through the Heck reaction of 9,10 dibromoanthracene (A-Br2) or 1,3,6,8-tetrabromopyrene (P-Br4)/A-Br2 as co-monomers with octavinylsilsesquioxane (OVS), in order to afford OVS-A HPP and OVS-P-A HPP, respectively. The chemical structures of these two hybrid porous polymers were validated through FTIR and solid-state 13C and 29Si NMR spectroscopy. The thermal stability and porosity of these materials were measured by TGA and N2 adsorption/desorption analyses, demonstrating that OVS-A HPP has higher thermal stability (Td10: 579 °C) and surface area (433 m2 g-1) than OVS-P-A HPP (Td10: 377 °C and 98 m2 g-1) due to its higher cross-linking density. Furthermore, the electrochemical analysis showed that OVS-P-A HPP has a higher specific capacitance (177 F g -1 at 0.5 A F g-1) when compared to OVS-A HPP (120 F g -1 at 0.5 A F g-1). The electron-rich phenyl rings and Faradaic reaction between the π-conjugated network and anthracene moiety may be attributed to their excellent electrochemical performance of OVS-P-A HPP.


Assuntos
Antracenos , Pirenos , Porosidade , Eletrodos , Polímeros
16.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679213

RESUMO

This study synthesized two azide-functionalized monomers through p-dichloro xylene and double-decker silsesquioxane (DDSQ) units with NaN3 to form DB-N3 and DDSQ-N3 monomers, respectively. In addition, five different propargyl-functionalized monomers were also prepared from hydroquinone, bisphenol A, bis(4-hydroxyphenyl)methanone, 2,4-dihydroxybenzaldehyde (then reacted with hydrazine hydrate solution) and 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethene with propargyl bromide to form P-B, P-BPA, P-CO, P-NP, and P-TPE monomers, respectively. As a result, various DDSQ-based main chain copolymers could be synthesized using Cu(I)-catalyzed click polymerization through DDSQ-N3 with different propargyl-functionalized monomers, of which the chemical structure and molecular weight could be confirmed by using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) analyses. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy analyses also could characterize the thermal stability, morphology, and optical behaviors of these DDSQ-based copolymers. All results indicate that the incorporation of an inorganic DDSQ cage could improve the thermal stability such as thermal decomposition temperature and char yield, because of the DDSQ dispersion homogeneously in the copolymer matrix, and this would then affect the optical properties of NP and TPE units in this work.

17.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201777

RESUMO

A series of di-functional benzoxazine (BZ) monomers was synthesized, specifically the double-decker silsesquioxane (DDSQ) cage structure (DDSQ-BZ). Comparative analyses were conducted between DDSQ-BZ monomers and the most commonly utilized bisphenol A-functionalized bifunctional benzoxazine (BPA-BZ) monomer. DDSQ-BZ compounds possess better thermal properties such as high char yield and high thermal decomposition temperature (Td10) after thermal ring-opening polymerization (ROP) because the inorganic DDSQ cage nanostructure features a nano-reinforcement effect. In addition, blending inorganic DDSQ-BZ compounds with epoxy resin was explored to form organic/inorganic hybrids with enhanced thermal and mechanical properties following thermal ROP. The improvement in mechanical properties is primarily attributed to the network structure formed by the cross-linking between DDSQ-BZ and the epoxy resin during thermal ROP, as well as hydrogen bonding interactions formed between the hydroxyl groups generated during thermal ROP and the Si-O-Si bonds in the DDSQ structure.

18.
Nano Lett ; 22(23): 9343-9350, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377801

RESUMO

In nature, deep-sea fish featured with close-packed melanosomes can remarkably lower light reflection, which have inspired us to design ultrablack coatings for enhanced solar-to-thermal conversion. Herein, a biomimetic ultrablack textile is developed enabled by the formation of hierarchical polypyrrole (Ppy) nanospheres. The fabricated textile exhibits prominently suppressed reflectance of lower than 4% and highly enhanced absorption of up to 96%. Further experimental results and molecular dynamics (MD) simulation evidence the formation process of hierarchical nanospheres. Based on high-efficient solar-to-thermal conversion, the biomimetic textile with desirable conductivity allows the development of a salt-free solar evaporator, enabling a sustainable seawater evaporation rate of up to 1.54 kg m-2 h-1 under 1 sun. Furthermore, the biomimetic hierarchical textile exhibits good superhydrophobicity, enhanced photothermal property, and high electrothermal conversion, demonstrating significant potential in wearable thermal management (rescue vests) in water conditions.


Assuntos
Biomimética , Nanoestruturas , Animais , Polímeros , Pirróis , Têxteis
19.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234775

RESUMO

In this study, we synthesized three hybrid microporous polymers through Heck couplings of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining the porous organic-inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively. Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the POSS-Th POIP possessed the highest thermal stability (T5: 586 °C; T10: 785 °C; char yield: 90 wt%), presumably because of a strongly crosslinked network formed between its OVS and Th moieties. Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g-1) at 0.5 A g-1 was higher than those of the POSS-Th (213 F g-1) and POSS-OXD (119 F g-1) POIPs. We attribute the superior electrochemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich phenyl groups within its structure.

20.
Chem Commun (Camb) ; 58(88): 12317-12320, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36254831

RESUMO

We conducted Passerini-type multicomponent polymerizations (P-MCPs) with various monomers and afforded a series of functional poly(carbamoyl ester)s (PCEs). We demonstrated an efficient, diverse, and facile approach through P-MCPs to produce these novel PCEs with dual-cleavable linkages of ester and disulfide groups and the aggregation-induced emission (AIE) luminogen tetraphenylethylene (TPE).


Assuntos
Nanopartículas , Polímeros , Polimerização , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA