Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620954

RESUMO

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hormônio Liberador de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Genes Dominantes/genética , Hormônio Liberador de Gonadotropina/deficiência , Haploinsuficiência/genética , Humanos , Síndrome de Kallmann/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Peixe-Zebra/genética
2.
Neurology ; 91(4): e319-e330, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29959261

RESUMO

OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy.


Assuntos
Alelos , Progressão da Doença , Mutação/genética , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Proteína Sequestossoma-1/genética , Adolescente , Adulto , Idade de Início , Animais , Feminino , Humanos , Masculino , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem , Peixe-Zebra
3.
Sci Signal ; 10(500)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018170

RESUMO

Birth defects of the heart and face are common, and most have no known genetic cause, suggesting a role for environmental factors. Maternal fever during the first trimester is an environmental risk factor linked to these defects. Neural crest cells are precursor populations essential to the development of both at-risk tissues. We report that two heat-activated transient receptor potential (TRP) ion channels, TRPV1 and TRPV4, were present in neural crest cells during critical windows of heart and face development. TRPV1 antagonists protected against the development of hyperthermia-induced defects in chick embryos. Treatment with chemical agonists of TRPV1 or TRPV4 replicated hyperthermia-induced birth defects in chick and zebrafish embryos. To test whether transient TRPV channel permeability in neural crest cells was sufficient to induce these defects, we engineered iron-binding modifications to TRPV1 and TRPV4 that enabled remote and noninvasive activation of these channels in specific cellular locations and at specific developmental times in chick embryos with radio-frequency electromagnetic fields. Transient stimulation of radio frequency-controlled TRP channels in neural crest cells replicated fever-associated defects in developing chick embryos. Our data provide a previously undescribed mechanism for congenital defects, whereby hyperthermia activates ion channels that negatively affect fetal development.


Assuntos
Anormalidades Congênitas/etiologia , Febre/complicações , Insuficiência Cardíaca/etiologia , Crista Neural/patologia , Canais de Cátion TRPV/metabolismo , Animais , Embrião de Galinha , Galinhas , Anormalidades Congênitas/metabolismo , Anormalidades Congênitas/patologia , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Gravidez , Peixe-Zebra
5.
Nat Genet ; 49(2): 238-248, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067909

RESUMO

Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes.


Assuntos
Atresia das Cóanas/genética , Proteínas Cromossômicas não Histona/genética , Predisposição Genética para Doença/genética , Microftalmia/genética , Distrofias Musculares/genética , Mutação/genética , Nariz/anormalidades , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA