Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Struct Mol Biol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806694

RESUMO

The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision.

2.
Nucleic Acids Res ; 52(5): 2198-2211, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38407356

RESUMO

G-quadruplex (G4s) DNA structures have been implicated in inducing genomic instability and contributing to cancer development. However, the relationship between G4s and cancer-related single nucleotide variants (cSNVs) in clinical settings remains unclear. In this large-scale study, we integrated experimentally validated G4s with genomic cSNVs from 13480 cancer patients to investigate the spatial association of G4s with the cellular cSNV landscape. Our findings demonstrate an increase in local genomic instability with increasing local G4 content in cancer patients, suggesting a potential role for G4s in driving cSNVs. Notably, we observed distinct spatial patterns of cSNVs and common single nucleotide variants (dbSNVs) in relation to G4s, implying different mechanisms for their generation and accumulation. We further demonstrate large, cancer-specific differences in the relationship of G4s and cSNVs, which could have important implications for a new class of G4-stabilizing cancer therapeutics. Moreover, we show that high G4-content can serve as a prognostic marker for local cSNV density and patient survival rates. Our findings underscore the importance of considering G4s in cancer research and highlight the need for further investigation into the underlying molecular mechanisms of G4-mediated genomic instability, especially in the context of cancer.


Assuntos
Quadruplex G , Instabilidade Genômica , Neoplasias , Polimorfismo Genético , Humanos , DNA/química , Instabilidade Genômica/genética , Neoplasias/genética
3.
Curr Opin Struct Biol ; 80: 102605, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150041

RESUMO

Nucleotide excision repair (NER) is unique in its ability to identify and remove vastly different lesions from DNA. Recent advances in the structural characterization of complexes involved in detection, verification, and excision of damaged DNA have reshaped our understanding of the molecular architecture of this efficient and accurate machinery. Initial damage recognition achieved through transcription coupled repair (TC-NER) or global genome repair (GG-NER) has been addressed by complexes of RNA Pol II with different TC-NER factors and XPC/RAD23B/Centrin-2 with TFIIH, respectively. Moreover, transcription factor IIH (TFIIH), one of the core repair factors and a central NER hub was resolved in different states, providing important insights how this complex facilitates DNA opening and damage verification. Combined, these recent advances led to a highly improved understanding of the molecular landscape of NER core processes, sharpening our view on how NER is successfully achieved.


Assuntos
Dano ao DNA , Reparo do DNA , Fator de Transcrição TFIIH/metabolismo , DNA/genética
4.
J Am Chem Soc ; 145(17): 9428-9433, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071840

RESUMO

Covalent crosslinking of DNA strands provides a useful tool for medical, biochemical, and DNA nanotechnology applications. Here we present a light-induced interstrand DNA crosslinking reaction using the modified nucleoside 5-phenylethynyl-2'-deoxyuridine (PhedU). The crosslinking ability of PhedU was programmed by base pairing and by metal ion interaction at the Watson-Crick base pairing site. Rotation to intrahelical positions was favored by hydrophobic stacking and enabled an unexpected photochemical alkene-alkyne [2 + 2] cycloaddition within the DNA duplex, resulting in efficient formation of a PhedU dimer after short irradiation times of a few seconds. A PhedU-dimer-containing DNA was shown to efficiently bind a helicase complex, but the covalent crosslink completely prevented DNA unwinding, suggesting possible applications in biochemistry or structural biology.


Assuntos
DNA , Nucleosídeos , Conformação de Ácido Nucleico , Pareamento de Bases , DNA/química , Metais , Reagentes de Ligações Cruzadas/química
5.
Science ; 374(6573): eabm4805, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762488

RESUMO

Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning­based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.


Assuntos
Aprendizado Profundo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Segregação de Cromossomos , Biologia Computacional , Simulação por Computador , Reparo do DNA , Evolução Molecular , Recombinação Homóloga , Ligases/química , Ligases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica , Mapas de Interação de Proteínas , Proteoma/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina/metabolismo
6.
Genes Chromosomes Cancer ; 60(12): 827-832, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338390

RESUMO

Familial gastrointestinal stromal tumors (GIST) are dominant genetic disorders that are caused by germline mutations of the type III receptor tyrosine kinase KIT. While sporadic mutations are frequently found in mastocytosis and GISTs, germline mutations of KIT have only been described in 39 families until now. We detected a novel germline mutation of KIT in exon 11 (p.Lys-558-Asn; K558N) in a patient from a kindred with several GISTs harboring different secondary somatic KIT mutations. Structural analysis suggests that the primary germline mutation alone is not sufficient to release the autoinhibitory region of KIT located in the transmembrane domain. Instead, the KIT kinase module becomes constitutively activated when K558N combines with different secondary somatic mutations. The identical germline mutation in combination with an additional somatic KIT mutation was detected in a second patient of the kindred with seminoma while a third patient within the family had a cutaneous mastocytosis. These findings suggest that the K558N mutation interferes with the juxtamembranous part of KIT, since seminoma and mastocystosis are usually not associated with exon 11 mutations.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Mastocitose/genética , Proteínas Proto-Oncogênicas c-kit/genética , Seminoma/genética , Adolescente , Adulto , Criança , Pré-Escolar , Éxons/genética , Feminino , Tumores do Estroma Gastrointestinal/patologia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Mastocitose/patologia , Linhagem , Seminoma/patologia , Adulto Jovem
7.
Sci Rep ; 11(1): 17038, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426585

RESUMO

Over the last decades the phase problem in macromolecular x-ray crystallography has become more controllable as methods and approaches have diversified and improved. However, solving the phase problem is still one of the biggest obstacles on the way of successfully determining a crystal structure. To overcome this caveat, we have utilized the anomalous scattering properties of the heavy alkali metal cesium. We investigated the introduction of cesium in form of cesium chloride during the three major steps of protein treatment in crystallography: purification, crystallization, and cryo-protection. We derived a step-wise procedure encompassing a "quick-soak"-only approach and a combined approach of CsCl supplement during purification and cryo-protection. This procedure was successfully applied on two different proteins: (i) Lysozyme and (ii) as a proof of principle, a construct consisting of the PH domain of the TFIIH subunit p62 from Chaetomium thermophilum for de novo structure determination. Usage of CsCl thus provides a versatile, general, easy to use, and low cost phasing strategy.

8.
DNA Repair (Amst) ; 105: 103143, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144487

RESUMO

The general transcription factor II H (TFIIH) plays an essential role in transcription and nucleotide excision DNA repair (NER). TFIIH is a complex 10 subunit containing molecular machine that harbors three enzymatic activities while the remaining subunits assume regulatory and/or structural functions. Intriguingly, the three enzymatic activities of the CDK7 kinase, the XPB translocase, and the XPD helicase exert different impacts on the overall activities of TFIIH. While the enzymatic function of the XPD helicase is exclusively required in NER, the CDK7 kinase is deeply involved in transcription, whereas XPB is essential to both processes. Recent structural and biochemical endeavors enabled unprecedented details towards the molecular basis of these different TFIIH functions and how the enzymatic activities are regulated within the entire complex. Due to its involvement in two fundamental processes, TFIIH has become increasingly important as a target in cancer therapy and two of the three enzymes have already been addressed successfully. Here we explore the possibilities of recent high resolution structures in the context of TFIIH druggability and shed light on the functional consequences of the different approaches towards TFIIH inhibition.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA , Neoplasias/metabolismo , Fator de Transcrição TFIIH/antagonistas & inibidores , Fator de Transcrição TFIIH/metabolismo , Antineoplásicos/uso terapêutico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Front Cell Dev Biol ; 9: 617160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777931

RESUMO

The successful elimination of bulky DNA damages via the nucleotide excision repair (NER) system is largely determined by the damage recognition step. This step consists of primary recognition and verification of the damage. The TFIIH helicase XPD plays a key role in the verification step during NER. To date, the mechanism of damage verification is not sufficiently understood and requires further detailed research. This study is a systematic investigation of the interaction of ctXPD (Chaetomium thermophilum) as well as ctXPD-ctp44 with model DNAs, which contain structurally different bulky lesions with previously estimated NER repair efficiencies. We have used ATPase and DNA binding studies to assess the interaction of ctXPD with damaged DNA. The result of the analysis of ctXPD-ctp44 binding to DNA containing fluorescent and photoactivatable lesions demonstrates the relationship between the affinity of XPD for DNAs containing bulky damages and the ability of the NER system to eliminate the damage. Photo-cross-linking of ctXPD with DNA probes containing repairable and unrepairable photoactivatable damages reveals differences in the DNA interaction efficiency in the presence and absence of ctp44. In general, the results obtained indicate the ability of ctXPD-ctp44 to interact with a damage and suggest a significant role for ctp44 subunit in the verification process.

10.
Nucleic Acids Res ; 48(21): 12282-12296, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196848

RESUMO

The superfamily 2 helicase XPB is an integral part of the general transcription factor TFIIH and assumes essential catalytic functions in transcription initiation and nucleotide excision repair. The ATPase activity of XPB is required in both processes. We investigated the interaction network that regulates XPB via the p52 and p8 subunits with functional mutagenesis based on our crystal structure of the p52/p8 complex and current cryo-EM structures. Importantly, we show that XPB's ATPase can be activated either by DNA or by the interaction with the p52/p8 proteins. Intriguingly, we observe that the ATPase activation by p52/p8 is significantly weaker than the activation by DNA and when both p52/p8 and DNA are present, p52/p8 dominates the maximum activation. We therefore define p52/p8 as the master regulator of XPB acting as an activator and speed limiter at the same time. A correlative analysis of the ATPase and translocase activities of XPB shows that XPB only acts as a translocase within the context of complete core TFIIH and that XPA increases the processivity of the translocase complex without altering XPB's ATPase activity. Our data define an intricate network that tightly controls the activity of XPB during transcription and nucleotide excision repair.


Assuntos
Adenosina Trifosfatases/química , Chaetomium/química , DNA/genética , Proteínas Fúngicas/química , Subunidades Proteicas/química , Fator de Transcrição TFIIH/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Chaetomium/genética , Chaetomium/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
11.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33166411

RESUMO

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Fator de Transcrição TFIIH/ultraestrutura , Sítios de Ligação/efeitos da radiação , Microscopia Crioeletrônica , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/efeitos da radiação , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula , Fator de Transcrição TFIIH/genética , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 117(43): 26739-26748, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055219

RESUMO

Cyclin-dependent kinase 7 (CDK7), Cyclin H, and the RING-finger protein MAT1 form the heterotrimeric CDK-activating kinase (CAK) complex which is vital for transcription and cell-cycle control. When associated with the general transcription factor II H (TFIIH) it activates RNA polymerase II by hyperphosphorylation of its C-terminal domain (CTD). In the absence of TFIIH the trimeric complex phosphorylates the T-loop of CDKs that control cell-cycle progression. CAK holds a special position among the CDK branch due to this dual activity and the dependence on two proteins for activation. We solved the structure of the CAK complex from the model organism Chaetomium thermophilum at 2.6-Å resolution. Our structure reveals an intricate network of interactions between CDK7 and its two binding partners MAT1 and Cyclin H, providing a structural basis for the mechanism of CDK7 activation and CAK activity regulation. In vitro activity measurements and functional mutagenesis show that CDK7 activation can occur independent of T-loop phosphorylation and is thus exclusively MAT1-dependent by positioning the CDK7 T-loop in its active conformation.


Assuntos
Ciclina H , Quinases Ciclina-Dependentes , Ciclo Celular , Chaetomium/química , Chaetomium/enzimologia , Ciclina H/química , Ciclina H/metabolismo , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fosforilação , Transcrição Gênica , Quinase Ativadora de Quinase Dependente de Ciclina
13.
RNA ; 26(10): 1448-1463, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32646969

RESUMO

RNA-binding proteins (RBPs) play important roles in bacterial gene expression and physiology but their true number and functional scope remain little understood even in model microbes. To advance global RBP discovery in bacteria, we here establish glycerol gradient sedimentation with RNase treatment and mass spectrometry (GradR). Applied to Salmonella enterica, GradR confirms many known RBPs such as CsrA, Hfq, and ProQ by their RNase-sensitive sedimentation profiles, and discovers the FopA protein as a new member of the emerging family of FinO/ProQ-like RBPs. FopA, encoded on resistance plasmid pCol1B9, primarily targets a small RNA associated with plasmid replication. The target suite of FopA dramatically differs from the related global RBP ProQ, revealing context-dependent selective RNA recognition by FinO-domain RBPs. Numerous other unexpected RNase-induced changes in gradient profiles suggest that cellular RNA helps to organize macromolecular complexes in bacteria. By enabling poly(A)-independent generic RBP discovery, GradR provides an important element in the quest to build a comprehensive catalog of microbial RBPs.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Poli A/metabolismo , Domínios Proteicos/fisiologia , RNA Bacteriano/metabolismo , Proteínas Repressoras/metabolismo , Salmonella enterica/metabolismo
14.
Nat Commun ; 11(1): 1667, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245994

RESUMO

The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Domínios Proteicos/fisiologia , Fatores de Transcrição/ultraestrutura , Proteína Grupo D do Xeroderma Pigmentoso/ultraestrutura , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Reparo do DNA , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica/genética , RNA Polimerase II/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
15.
Nat Commun ; 11(1): 1356, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170071

RESUMO

Nucleotide excision repair (NER) removes a wide range of DNA lesions, including UV-induced photoproducts and bulky base adducts. XPA is an essential protein in eukaryotic NER, although reports about its stoichiometry and role in damage recognition are controversial. Here, by PeakForce Tapping atomic force microscopy, we show that human XPA binds and bends DNA by ∼60° as a monomer. Furthermore, we observe XPA specificity for the helix-distorting base adduct N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene over non-damaged dsDNA. Moreover, single molecule fluorescence microscopy reveals that DNA-bound XPA exhibits multiple modes of linear diffusion between paused phases. The presence of DNA damage increases the frequency of pausing. Truncated XPA, lacking the intrinsically disordered N- and C-termini, loses specificity for DNA lesions and shows less pausing on damaged DNA. Our data are consistent with a working model in which monomeric XPA bends DNA, displays episodic phases of linear diffusion along DNA, and pauses in response to DNA damage.


Assuntos
DNA/química , DNA/metabolismo , Imagem Individual de Molécula/métodos , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Biofísica/métodos , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Microscopia de Força Atômica , Ligação Proteica , Raios Ultravioleta
16.
Biol Open ; 8(6)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036752

RESUMO

In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development.

17.
J Invest Dermatol ; 138(7): 1573-1581, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29481902

RESUMO

Primary cutaneous marginal zone lymphoma (PCMZL) represents an indolent subtype of non-Hodgkin lymphoma that is clinically characterized by slowly growing skin tumors with a very low propensity for systemic dissemination. The underlying genetic basis of PCMZL has not been comprehensively elucidated. To gain deeper insight into the molecular pathogenesis of PCMZL, we performed hybridization-based panel sequencing of 38 patients with well-characterized PCMZL. In 32 of the 38 patients, we identified genetic alterations within 39 selected target genes. The most frequently detected alterations (24/38 patients, 63.2%) affected the FAS gene, of which 22 patients harbored alterations, which affect the functionally relevant death domain of the apoptosis-regulating FAS/CD95 protein in a dominant-negative manner. In addition, we identified highly recurrent mutations in three other genes, namely SLAMF1, SPEN, and NCOR2. Our molecular data suggest that apoptosis defects provide the molecular basis of the observed clinical features of PCMZL, which commonly presents with only slowly growing skin tumors, reflecting its invariably indolent behavior. From a diagnostic point of view, highly recurrent FAS mutations in PCMZL presumably separate this indolent lymphoma entity from pseudolymphoma, and this adds adjunctive discriminatory features at a molecular level.


Assuntos
Biomarcadores Tumorais/genética , Linfoma de Zona Marginal Tipo Células B/genética , Neoplasias Cutâneas/genética , Receptor fas/genética , Domínio de Morte/genética , Diagnóstico Diferencial , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Mutação , Pseudolinfoma/diagnóstico , Neoplasias Cutâneas/diagnóstico
18.
Nucleic Acids Res ; 45(18): 10872-10883, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977422

RESUMO

The general transcription factor IIH (TFIIH) is a multi-protein complex and its 10 subunits are engaged in an intricate protein-protein interaction network critical for the regulation of its transcription and DNA repair activities that are so far little understood on a molecular level. In this study, we focused on the p44 and the p34 subunits, which are central for the structural integrity of core-TFIIH. We solved crystal structures of a complex formed by the p34 N-terminal vWA and p44 C-terminal zinc binding domains from Chaetomium thermophilum and from Homo sapiens. Intriguingly, our functional analyses clearly revealed the presence of a second interface located in the C-terminal zinc binding region of p34, which can rescue a disrupted interaction between the p34 vWA and the p44 RING domain. In addition, we demonstrate that the C-terminal zinc binding domain of p34 assumes a central role with respect to the stability and function of TFIIH. Our data reveal a redundant interaction network within core-TFIIH, which may serve to minimize the susceptibility to mutational impairment. This provides first insights why so far no mutations in the p34 or p44 TFIIH-core subunits have been identified that would lead to the hallmark nucleotide excision repair syndromes xeroderma pigmentosum or trichothiodystrophy.


Assuntos
Fator de Transcrição TFIIH/química , Chaetomium/enzimologia , Proteínas Fúngicas/química , Humanos , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Fator de Transcrição TFIIH/genética
19.
Nat Microbiol ; 2(11): 1523-1532, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894098

RESUMO

The most prominent defence of the unicellular parasite Trypanosoma brucei against the host immune system is a dense coat that comprises a variant surface glycoprotein (VSG). Despite the importance of the VSG family, no complete structure of a VSG has been reported. Making use of high-resolution structures of individual VSG domains, we employed small-angle X-ray scattering to elucidate the first two complete VSG structures. The resulting models imply that the linker regions confer great flexibility between domains, which suggests that VSGs can adopt two main conformations to respond to obstacles and changes of protein density, while maintaining a protective barrier at all times. Single-molecule diffusion measurements of VSG in supported lipid bilayers substantiate this possibility, as two freely diffusing populations could be detected. This translates into a highly flexible overall topology of the surface VSG coat, which displays both lateral movement in the plane of the membrane and variation in the overall thickness of the coat.


Assuntos
Trypanosoma brucei brucei/química , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
20.
ACS Infect Dis ; 3(9): 666-675, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786661

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a highly successful human pathogen and has infected approximately one-third of the world's population. Multiple drug resistant (MDR) and extensively drug resistant (XDR) TB strains and coinfection with HIV have increased the challenges of successfully treating this disease pandemic. The metabolism of host cholesterol by Mtb is an important factor for both its virulence and pathogenesis. In Mtb, the cholesterol side chain is degraded through multiple cycles of ß-oxidation and FadA5 (Rv3546) catalyzes side chain thiolysis in the first two cycles. Moreover, FadA5 is important during the chronic stage of infection in a mouse model of Mtb infection. Here, we report the redox control of FadA5 catalytic activity that results from reversible disulfide bond formation between Cys59-Cys91 and Cys93-Cys377. Cys93 is the thiolytic nucleophile, and Cys377 is the general acid catalyst for cleavage of the ß-keto-acyl-CoA substrate. The disulfide bond formed between the two catalytic residues Cys93 and Cys377 blocks catalysis. The formation of the disulfide bonds is accompanied by a large domain swap at the FadA5 dimer interface that serves to bring Cys93 and Cys377 in close proximity for disulfide bond formation. The catalytic activity of FadA5 has a midpoint potential of -220 mV, which is close to the Mtb mycothiol potential in the activated macrophage. The redox profile of FadA5 suggests that FadA5 is fully active when Mtb resides in the unactivated macrophage to maximize flux into cholesterol catabolism. Upon activation of the macrophage, the oxidative shift in the mycothiol potential will decrease the thiolytic activity by 50%. Thus, the FadA5 midpoint potential is poised to rapidly restrict cholesterol side chain degradation in response to oxidative stress from the host macrophage environment.


Assuntos
Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Colesterol/metabolismo , Mycobacterium tuberculosis/patogenicidade , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Dicroísmo Circular , Cisteína/metabolismo , Humanos , Ativação de Macrófagos , Modelos Moleculares , Oxirredução , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA