Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20269, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985896

RESUMO

When developing models in cognitive science, researchers typically start with their own intuitions about human behavior in a given task and then build in mechanisms that explain additional aspects of the data. This refinement step is often hindered by how difficult it is to distinguish the unpredictable randomness of people's decisions from meaningful deviations between those decisions and the model. One solution for this problem is to compare the model against deep neural networks trained on behavioral data, which can detect almost any pattern given sufficient data. Here, we apply this method to the domain of planning with a heuristic search model for human play in 4-in-a-row, a combinatorial game where participants think multiple steps into the future. Using a data set consisting of 10,874,547 games, we train deep neural networks to predict human moves and find that they accurately do so while capturing meaningful patterns in the data. Thus, deviations between the model and the best network allow us to identify opportunities for model improvement despite starting with a model that has undergone substantial testing in previous work. Based on this analysis, we add three extensions to the model that range from a simple opening bias to specific adjustments regarding endgame planning. Overall, our work demonstrates the advantages of model comparison with a high-performance deep neural network as well as the feasibility of scaling cognitive models to massive data sets for systematically investigating the processes underlying human sequential decision-making.


Assuntos
Redes Neurais de Computação , Pensamento , Humanos
2.
Nature ; 618(7967): 1000-1005, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258667

RESUMO

A hallmark of human intelligence is the ability to plan multiple steps into the future1,2. Despite decades of research3-5, it is still debated whether skilled decision-makers plan more steps ahead than novices6-8. Traditionally, the study of expertise in planning has used board games such as chess, but the complexity of these games poses a barrier to quantitative estimates of planning depth. Conversely, common planning tasks in cognitive science often have a lower complexity9,10 and impose a ceiling for the depth to which any player can plan. Here we investigate expertise in a complex board game that offers ample opportunity for skilled players to plan deeply. We use model fitting methods to show that human behaviour can be captured using a computational cognitive model based on heuristic search. To validate this model, we predict human choices, response times and eye movements. We also perform a Turing test and a reconstruction experiment. Using the model, we find robust evidence for increased planning depth with expertise in both laboratory and large-scale mobile data. Experts memorize and reconstruct board features more accurately. Using complex tasks combined with precise behavioural modelling might expand our understanding of human planning and help to bridge the gap with progress in artificial intelligence.


Assuntos
Comportamento de Escolha , Teoria dos Jogos , Jogos Experimentais , Inteligência , Modelos Psicológicos , Humanos , Inteligência Artificial , Cognição , Movimentos Oculares , Heurística , Memória , Tempo de Reação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA