Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38555594

RESUMO

5-Fluorouracil (5-FU) is a commonly used anticancer drug for colorectal cancer (CRC). Therefore, it is crucial to elucidate the mechanisms that contribute to 5-FU resistance. We established an acquired 5-FU resistant cell line, HCT116RF10, derived from CRC cells and investigated its energy metabolism as well as the underlying mechanism of 5-FU resistance. We examined the sensitivity to 5-FU and the formation of tumor spheres in parental HCT116 cells and 5-FU-resistant HCT116RF10 cells under 3D culture conditions at high-glucose (HG 25 mM) and low-glucose (LG 5.5 mM) concentrations. These results suggested that the tumor spheres of parental HCT116 cells displayed higher sensitivity to 5-FU under LG conditions than under HG conditions. HCT116RF10 tumor spheres exhibited comparable sensitivity to 5-FU under HG and LG conditions. Furthermore, under HG conditions, there was a marked decrease in extracellular lactate in the HCT116RF10 tumor sphere compared to that in the LG tumor sphere. Similarly, HCT116 tumor spheres showed decreased extracellular lactate levels under LG conditions compared to those grown under HG conditions. Moreover, the evidence reveals that the tumor spheres of HCT116RF10 and HCT116 cells exhibit disparate dependencies on energy metabolism, glycolysis, and mitochondrial respiration under both HG and LG conditions. These results have important clinical implications for overcoming 5-FU resistance and enhancing antitumor treatment strategies.

2.
FEBS Open Bio ; 13(6): 1125-1133, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058332

RESUMO

5-Fluorouracil (5-FU) is widely used for colorectal cancer (CRC) treatment; however, continuous treatment of CRC cells with 5-FU can result in acquired resistance, and the underlying mechanism of 5-FU resistance remains unclear. We previously established an acquired 5-FU-resistant CRC cell line, HCT116RF10 , and examined its biological features and 5-FU resistance mechanisms. In this study, we evaluated the 5-FU sensitivity and cellular respiration dependency of HCT116RF10 cells and parental HCT116 cells under conditions of high- and low-glucose concentrations. Both HCT116RF10 and parental HCT116 cells were more sensitive to 5-FU under low-glucose conditions compared with high-glucose conditions. Interestingly, HCT116RF10 and parental HCT116 cells exhibited altered cellular respiration dependence for glycolysis and mitochondrial respiration under high- and low-glucose conditions. Additionally, HCT116RF10 cells showed a markedly decreased ATP production rate compared with HCT116 cells under both high- and low-glucose conditions. Importantly, glucose restriction significantly reduced the ATP production rate for both glycolysis and mitochondrial respiration in HCT116RF10 cells compared with HCT116 cells. The ATP production rates in HCT116RF10 and HCT116 cells were reduced by approximately 64% and 23%, respectively, under glucose restriction, suggesting that glucose restriction may be effective at enhancing 5-FU chemotherapy. Overall, these findings shed light on 5-FU resistance mechanisms, which may lead to improvements in anticancer treatment strategies.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Células HCT116 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glucose , Trifosfato de Adenosina/metabolismo , Respiração Celular
3.
FASEB Bioadv ; 5(1): 43-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643896

RESUMO

5-Fluorouracil (5-FU) is a cornerstone drug used to treat colorectal cancer (CRC). However, the prolonged exposure of CRC cells to 5-FU results in acquired resistance. We have previously demonstrated that levels of the 5-fluorodeoxyuridylate (FdUMP) covalent complex with thymidylate synthase (FdUMP-TS) and free-TS (native enzyme) are higher in 5-FU-resistant CRC cells than in the parental cell line (HCT116). Accordingly, resistant cells may have an efficient system for trapping and removing FdUMP-TS, thus imparting resistance. In this study, using a model of 5-FU-resistant CRC cells generated by repeated exposure, the role of autophagy in the elimination of FdUMP-TS in resistant cells was investigated. The resistant cells showed greater sensitivity to autophagy inhibitors than that of parental cells. Autophagy inhibition increased 5-FU cytotoxicity more substantially in resistant cells than in parental cells. Furthermore, autophagy inhibition increased FdUMP-TS protein accumulation in resistant cells. Our findings suggest that resistance to 5-FU is mediated by autophagy as a system to eliminate FdUMP-TS and may guide the use and optimization of combination therapies involving autophagy inhibitors.

4.
Cancer Rep (Hoboken) ; 6(2): e1709, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053937

RESUMO

BACKGROUND: Poly(ADP-ribose) glycohydrolase (PARG) is a key enzyme in poly(ADP-ribose) (PAR) metabolism and a potential anticancer target. Many drug candidates have been developed to inhibit its enzymatic activity. Additionally, PDD00017273 is an effective and selective inhibitor of PARG at the first cellular level. AIMS: Using human colorectal cancer (CRC) HCT116 cells, we investigated the molecular mechanisms and tumor biological aspects of the resistance to PDD00017273. METHODS AND RESULTS: HCT116RPDD , a variant of the human CRC cell line HCT116, exhibits resistance to the PARG inhibitor PDD00017273. HCT116RPDD cells contained specific mutations of PARG and PARP1, namely, PARG mutation Glu352Gln and PARP1 mutation Lys134Asn, as revealed by exome sequencing. Notably, the levels of PARG protein were comparable between HCT116RPDD and HCT116. In contrast, the PARP1 protein levels in HCT116RPDD were significantly lower than those in HCT116. Consequently, the levels of intracellular poly(ADP-ribosyl)ation were elevated in HCT116RPDD compared to HCT116. Interestingly, HCT116RPDD cells did not exhibit cross-resistance to COH34, an additional PARG inhibitor. CONCLUSION: Our findings suggest that the mutated PARG acquires PDD00017273 resistance due to structural modifications. In addition, our findings indicate that PDD00017273 resistance induces mutation and PARP downregulation. These discoveries collectively provide a better understanding of the anticancer candidate PARG inhibitors in terms of resistance mechanisms and anticancer strategies.


Assuntos
Neoplasias Colorretais , Glicosídeo Hidrolases , Humanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Genômica
5.
ACS Omega ; 7(7): 6046-6052, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224365

RESUMO

The major metabolite of the anticancer agent 5-fluorouracil (5-FU) is 5-fluorodeoxyuridine monophosphate (FdUMP), which is a potent inhibitor of thymidylate synthase (TS). Recently, we hypothesized that 5-FU-resistant colorectal cancer (CRC) cells have increased levels of TS protein relative to 5-FU-sensitive CRC cells and use a fraction of their TS to trap FdUMP, which results in resistance to 5-FU. In this study, we analyzed the difference between the regulation of the balance of the free, active form of TS and the inactive FdUMP-TS form in 5-FU-resistant HCT116 cells and parental HCT116 cells. Silencing of TYMS, the gene that encodes TS, resulted in greater enhancement of the anticancer effect of 5-FU in the 5-FU-resistant HCT116RF10 cells than in the parental HCT116 cells. In addition, the trapping of FdUMP by TS was more effective in the 5-FU-resistant HCT116RF10 cells than in the parental HCT116 cells. Our observations suggest that the regulation of the balance between the storage of the active TS form and the accumulation of FdUMP-TS is responsible for direct resistance to 5-FU. The findings provide a better understanding of 5-FU resistance mechanisms and may enable the development of anticancer strategies that reverse the sensitivity of 5-FU resistance in CRC cells.

6.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805673

RESUMO

5-Fluorouracil (5-FU) is a cornerstone drug used in the treatment of colorectal cancer (CRC). However, the development of resistance to 5-FU and its analogs remain an unsolved problem in CRC treatment. In this study, we investigated the molecular mechanisms and tumor biological aspects of 5-FU resistance in CRC HCT116 cells. We established an acquired 5-FU-resistant cell line, HCT116RF10. HCT116RF10 cells were cross-resistant to the 5-FU analog, fluorodeoxyuridine. In contrast, HCT116RF10 cells were collaterally sensitive to SN-38 and CDDP compared with the parental HCT16 cells. Whole-exome sequencing revealed that a cluster of genes associated with the 5-FU metabolic pathway were not significantly mutated in HCT116 or HCT116RF10 cells. Interestingly, HCT116RF10 cells were regulated by the function of thymidylate synthase (TS), a 5-FU active metabolite 5-fluorodeoxyuridine monophosphate (FdUMP) inhibiting enzyme. Half of the TS was in an active form, whereas the other half was in an inactive form. This finding indicates that 5-FU-resistant cells exhibited increased TS expression, and the TS enzyme is used to trap FdUMP, resulting in resistance to 5-FU and its analogs.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Timidilato Sintase/genética , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Floxuridina/farmacologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Irinotecano/farmacologia , Compostos de Platina/farmacologia , Timidilato Sintase/metabolismo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA