Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430482

RESUMO

In this study, the removal of nickel (Ni(II)) by adsorption from synthetically prepared solutions using natural bentonites (Lieskovec (L), Hliník nad Hronom (S), Jelsový Potok (JP), and Stará Kremnicka (SK)) was investigated. All experiments were carried out under batch processing conditions, with the concentration of Ni(II), temperature, and time as the variables. The adsorption process was fast, approaching equilibrium within 30 min. The Langmuir maximum adsorption capacities of the four bentonite samples used were found to be 8.41, 12.24, 21.79, and 21.93 mg g-1, respectively. The results best fitted the pseudo-second-order kinetic model, with constant rates in a range of 0.0948-0.3153 g mg-1 min. The effect of temperature was investigated at temperatures of 20, 30, and 40 °C. Thermodynamic parameters, including standard enthalpy (ΔH0), Gibbs energy (ΔG0), and standard entropy (ΔS0), were calculated. The adsorption of Ni(II) by bentonite samples was an endothermic and spontaneous process. These results indicated that, of the bentonite samples used, the natural bentonites from JP and SK were most suitable for the removal of nickel from synthetically prepared solutions.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 240: 118517, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535489

RESUMO

A new approach to determination of water content in raw perlites, an industrially important material, and obsidian was proposed, utilizing diffuse reflectance spectroscopy in the near-IR region. The phase composition of the perlite of the perlite samples was over 94% rhyolitic volcanic glass, with only small admixture of other components. The observed volatile species contents detected from both thermogravimetric analysis (TG) and the loss of ignition method (LOI) varied from 3 to 7%. The samples with the highest content of volatiles released over the temperature interval 30-250 °C (based on thermogravimetric analysis) displayed sharp signals in the 1H MAS NMR spectra, with chemical shifts of 4.6-4.7 ppm attributed to water molecules of high mobility. Using IR spectra taken in the near-infrared region, the water content of perlites was evaluated using the combination mode (ν + δ)H2O near 5240 cm-1. The band area depended on the H2O content, with the highest value found for the sample which displayed the highest mass loss in the thermoanalytical experiments. The samples showed variations in properties depending on the location in the deposit they were taken from. The relationship between water content determined gravimetrically and calculated band areas showed a correlation coefficient of 0.78 and 0.74 for TG and LOI respectively. The correlation was significantly improved by adding internal standards, hexadecyltrimethylammonium bromide salt (HDTMA) or layered hydrosilicate talc, to the perlite samples, and then normalizing the spectra of the mixtures to selected bands of those standards (R2 = 0.89 and 0.88 respectively for TG methods). A better correlation between infrared and TG/LOI results was obtained for HDTMA-Br than for talc. The proposed method using standards could be a reliable way of estimating water content in raw perlites in processing plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA