Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Sci Rep ; 14(1): 11114, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750118

RESUMO

Oral bacteria are known to be associated with perioperative complications during hospitalization. However, no presented reports have clarified the relationship of oral bacterial number with medical costs for inpatients. The Diagnosis Procedure Combination (DPC) database system used in Japan provides clinical information regarding acute hospital patients. The present study was conducted to determine the association of oral bacterial numbers in individual patients treated at a single institution with length of hospital stay and medical costs using DPC data. A total of 2369 patients referred by the medical department to the dental department at Hiroshima University Hospital were divided into the low (n = 2060) and high (n = 309) oral bacterial number groups. Length of hospital stay and medical costs were compared between the groups, as well as the associations of number of oral bacteria with Charlson comorbidity index (CCI)-related diseases in regard to mortality and disease severity. There was no significant difference in hospital stay length between the low (24.3 ± 24.2 days) and high (22.8 ± 20.1 days) oral bacterial number groups. On the other hand, the daily hospital medical cost in the high group was significantly greater (US$1456.2 ± 1505.7 vs. US$1185.7 ± 1128.6, P < 0.001). Additionally, there was no significant difference in CCI score between the groups, whereas the daily hospital medical costs for patients in the high group treated for cardiovascular disease or malignant tumors were greater than in the low number group (P < 0.05). Multivariate regression analysis was also performed, which showed that oral bacterial number, age, gender, BMI, cardiovascular disease, diabetes, malignant tumor, and hospital stay length were independently associated with daily hospitalization costs. Monitoring and oral care treatment to lower the number of oral bacteria in patients affected by cardiovascular disease or cancer may contribute to reduce hospitalization costs.


Assuntos
Hospitalização , Tempo de Internação , Humanos , Feminino , Masculino , Japão/epidemiologia , Idoso , Tempo de Internação/economia , Pessoa de Meia-Idade , Hospitalização/economia , Boca/microbiologia , Bases de Dados Factuais , Idoso de 80 Anos ou mais , Custos Hospitalares , Carga Bacteriana , Bactérias/isolamento & purificação , Bactérias/classificação , Custos de Cuidados de Saúde , Adulto
2.
J Periodontal Res ; 59(3): 530-541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501357

RESUMO

OBJECTIVE: The purpose of this study is to investigate regenerative process by immunohistochemical analysis and evaluate periodontal tissue regeneration following a topical application of BDNF to inflamed 3-wall intra-bony defects. BACKGROUND: Brain-derived neurotrophic factor (BDNF) plays a role in the survival and differentiation of central and peripheral neurons. BDNF can regulate the functions of non-neural cells, osteoblasts, periodontal ligament cells, endothelial cells, as well as neural cells. Our previous study showed that a topical application of BDNF enhances periodontal tissue regeneration in experimental periodontal defects of dog and that BDNF stimulates the expression of bone (cementum)-related proteins and proliferation of human periodontal ligament cells. METHODS: Six weeks after extraction of mandibular first and third premolars, 3-wall intra-bony defects were created in mandibular second and fourth premolars of beagle dogs. Impression material was placed in all of the artificial defects to induce inflammation. Two weeks after the first operation, BDNF (25 and 50 µg/mL) immersed into atelocollagen sponge was applied to the defects. As a control, only atelocollagen sponge immersed in saline was applied. Two and four weeks after the BDNF application, morphometric analysis was performed. Localizations of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA)-positive cells were evaluated by immunohistochemical analysis. RESULTS: Two weeks after application of BDNF, periodontal tissue was partially regenerated. Immunohistochemical analyses revealed that cells on the denuded root surface were positive with OPN and PCNA. PCNA-positive cells were also detected in the soft connective tissue of regenerating periodontal tissue. Four weeks after application of BDNF, the periodontal defects were regenerated with cementum, periodontal ligament, and alveolar bone. Along the root surface, abundant OPN-positive cells were observed. Morphometric analyses revealed that percentage of new cementum length and percentage of new bone area of experimental groups were higher than control group and dose-dependently increased. CONCLUSION: These findings suggest that BDNF could induce cementum regeneration in early regenerative phase by stimulating proliferation of periodontal ligament cells and differentiation into periodontal tissue cells, resulting in enhancement of periodontal tissue regeneration in inflamed 3-wall intra-bony defects.


Assuntos
Perda do Osso Alveolar , Fator Neurotrófico Derivado do Encéfalo , Cementogênese , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Cães , Cementogênese/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Osteopontina , Ligamento Periodontal/patologia , Ligamento Periodontal/efeitos dos fármacos , Masculino , Regeneração Tecidual Guiada Periodontal/métodos , Regeneração Óssea/efeitos dos fármacos , Cemento Dentário/patologia , Cemento Dentário/efeitos dos fármacos , Periodonto/patologia , Periodonto/metabolismo , Mandíbula , Proliferação de Células/efeitos dos fármacos
3.
J Oral Biosci ; 66(1): 170-178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38048847

RESUMO

OBJECTIVE: Human gingival epithelial cells (HGECs) function as a mechanical barrier against invasion by pathogenic organisms through epithelial cell-cell junction complexes, which are complex components of integrin. Integrins play an important role in the protective functions of HGECs. Human periodontal ligament (HPL) cells regulate periodontal homeostasis. However, periodontitis results in the loss of HPL cells. Therefore, as replenishment, HPL cells or mesenchymal stem cells (MSCs) can be transplanted. Herein, HPL cells and MSCs were used to elucidate the regulatory mechanisms of HGECs, assuming periodontal tissue homeostasis. METHODS: Human gingival fibroblasts (HGFs), HGECs, HPL cells, and MSCs were cultured, and the conditioned medium was collected. With or without silencing periostin mRNA, HGECs were cultured under normal conditions or in a conditioned medium. Integrin and periostin mRNA expression was determined using real-time polymerase chain reaction. Integrin protein expression was analyzed using flow cytometry, and periostin protein expression was determined via western blotting. RESULTS: The conditioned medium affected integrin expression in HGECs. Higher expression of periostin was observed in MSCs and HPL cells than in HGFs. The conditioned medium that contained periostin protein regulated integrin expression in HGECs. After silencing periostin in MSCs and HPL cells, periostin protein was not detected in the conditioned medium, and integrin expression in HGECs remained unaffected. CONCLUSIONS: Integrins in HGECs are regulated by periostin secreted from HPL cells and MSCs. This result suggests that periostin maintains gingival cell adhesion and regulates bacterial invasion/infection. Therefore, the functional regulation of periostin-secreting cells is important in preventing periodontitis.


Assuntos
Periodontite , Periostina , Humanos , Integrinas/genética , Integrinas/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
BMC Oral Health ; 23(1): 647, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674208

RESUMO

PURPOSE: Several studies have found associations between periodontitis and various types of cancer. Since the site of head and neck cancer (HNC) has contiguity or proximity to the oral cavity, it may be particularly influenced by oral inflammation. This study aimed to determine whether HNC patients have poor oral health as compared to those with other types of cancer. METHODS: This study retrospectively examined oral environmental factors including periodontal inflamed surface area (PISA), a new periodontal inflammatory parameter. A total of 1030 cancer patients were divided into the HNC (n = 142) and other cancer (n = 888) groups. Furthermore, the HNC group was divided into high (n = 71) and low (n = 71) PISA subgroups, and independent risk factors affecting a high PISA value were investigated. RESULTS: Multivariate logistic regression analysis showed that number of missing teeth (odds ratio 1.72, 95% CI 1.15-2.56, P < 0.01), PISA (odds ratio 1.06, 95% CI 1.03-1.06, P < 0.05), and oral bacterial count (odds ratio 1.02, 95% CI 1.01-1.03, P < 0.01) were independent factors related to HNC. In addition, multivariate logistic regression analysis indicated that current smoker (odds ratio 7.51, 95% CI 1.63-34.71, P < 0.01) and presence of untreated dental caries (odds ratio 3.33, 95% CI 1.23-9.00, P < 0.05) were independent risk factors affecting high PISA values in HNC patients. CONCLUSION: HNC patients have higher levels of gingival inflammation and poor oral health as compared to patients with other types of cancer, indicating that prompt oral assessment and an effective oral hygiene management plan are needed at the time of HNC diagnosis.


Assuntos
Cárie Dentária , Neoplasias de Cabeça e Pescoço , Humanos , Saúde Bucal , Cárie Dentária/complicações , Cárie Dentária/epidemiologia , Estudos Retrospectivos , Neoplasias de Cabeça e Pescoço/complicações , Inflamação
5.
J Periodontal Res ; 58(1): 83-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346011

RESUMO

OBJECTIVE: This study aimed to determine the regulatory mechanism of bone marrow-derived mesenchymal stem cell (BM-MSC) differentiation mediated by humoral factors derived from human periodontal ligament (HPL) cells and human gingival fibroblasts (HGFs). We analyzed histone deacetylase (HDAC) expression and activity involved in BM-MSC differentiation and determined their regulatory effects in co-cultures of BM-MSCs with HPL cells or HGFs. BACKGROUND: BM-MSCs can differentiate into various cell types and can, thus, be used in periodontal regenerative therapy. However, the mechanism underlying their differentiation remains unclear. Transplanted BM-MSCs are affected by periodontal cells via direct contact or secretion of humoral factors. Therefore, their activity is regulated by humoral factors derived from HPL cells or HGFs. METHODS: BM-MSCs were indirectly co-cultured with HPL cells or HGFs under osteogenic or growth conditions and then analyzed for osteogenesis, HDAC1 and HDAC2 expression and activity, and histone H3 acetylation. BM-MSCs were treated with trichostatin A, or their HDAC1 or HDAC2 expression was silenced or overexpressed during osteogenesis. Subsequently, they were evaluated for osteogenesis or the effects of HDAC activity. RESULTS: BM-MSCs co-cultured with HPL cells or HGFs showed suppressed osteogenesis, HDAC1 and HDAC2 expression, and HDAC phosphorylation; however, histone H3 acetylation was enhanced. Trichostatin A treatment remarkably suppressed osteogenesis, decreasing HDAC expression and enhancing histone H3 acetylation. HDAC1 and HDAC2 silencing negatively regulated osteogenesis in BM-MSCs to the same extent as that achieved by indirect co-culture with HPL cells or HGFs. Conversely, their overexpression positively regulated osteogenesis in BM-MSCs. CONCLUSION: The suppressive effects of HPL cells and HGFs on BM-MSC osteogenesis were regulated by HDAC expression and histone H3 acetylation to a greater extent than that mediated by HDAC activity. Therefore, regulation of HDAC expression has prospects in clinical applications for effective periodontal regeneration, mainly, bone regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Histonas/metabolismo , Ligamento Periodontal
6.
NPJ Regen Med ; 7(1): 47, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109564

RESUMO

Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells. Here, we induced MSCs from human induced pluripotent stem cells (iPSCs) via a neural crest cell (NCC) lineage under xeno-free conditions and evaluated their in vivo functions. We modified a previous MSC induction method to work under xeno-free conditions. Bovine serum albumin-containing NCC induction medium and fetal bovine serum-containing MSC induction medium were replaced with xeno-free medium. Through our optimized method, iPSCs differentiated into MSCs with high efficiency. To evaluate their in vivo activities, we transplanted the xeno-free-induced MSCs (XF-iMSCs) into mouse models for bone and skeletal muscle regeneration and confirmed their regenerative potency. These XF-iMSCs mainly promoted the regeneration of surrounding host cells, suggesting that they secrete soluble factors into affected regions. We also found that the peroxidasin and IGF2 secreted by the XF-iMSCs partially contributed to myotube differentiation. These results suggest that XF-iMSCs are important for future applications in regenerative medicine.

7.
PLoS One ; 17(6): e0269594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35666758

RESUMO

INTRODUCTION: Chewing well is essential for successful diet therapy and control of blood glucose level in patients with diabetes. In addition, long-term hyperglycemia is a risk factor for microvascular complications, which are the main cause of morbidity and mortality in these patients. Hence, it is plausible that masticatory disorder may be relevant to diabetic microvascular complications which is caused by long-term hyperglycemia. The aim of this study was to investigate whether masticatory disorders are relevant to diabetic microvascular complications. METHODS: This cross-sectional study included 172 patients with type 2 diabetes who underwent educational hospitalization in the Department of Endocrinology and Diabetic Medicine, Hiroshima University Hospital, from April 2016 to March 2020. Masticatory efficiency was determined quantitatively by using the GLUCO SENSOR GS-Ⅱ. Multivariable linear regression models were constructed to examine which factors were related to masticatory efficiency. Statistical significance was defined as a two-sided p value of < 0.05. RESULTS: According to the bivariable analysis, masticatory efficiency was significantly correlated with duration of diabetes (p = 0. 049), number of remaining teeth (p < 0.0001), the number of moving teeth (p = 0.007) and condition of diabetic neuropathy (p < 0.0001). Moreover, the number of remaining teeth (p < 0.0001) and diabetic neuropathy (p = 0.007) remained significantly correlated with masticatory efficiency in the multivariable analysis. CONCLUSIONS: For the first time, we demonstrated that patients with type 2 diabetes who developed diabetic neuropathy had significantly reduced masticatory efficiency. Effective mastication is an important factor in successful diet therapy for diabetes. To prevent the progression of diabetic complications, especially in patients with diabetic neuropathy, it may be necessary to combine individualized therapies from dentists and nutritionists with consideration for the level of masticatory dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Neuropatias Diabéticas , Hiperglicemia , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/complicações , Humanos , Mastigação
8.
Sci Rep ; 12(1): 2483, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169215

RESUMO

Febrile neutropenia (FN) is an infectious complication that develops during chemotherapy. Although the oral cavity can be an important infection route, it is unknown whether the oral environment is associated with FN. The present study examined the relationship between the oral environment using periodontal inflamed surface area (PISA), a new periodontal disease parameter, and FN in hematologic cancer patients undergoing chemotherapy. In this retrospective cohort study, 157 patients were divided into FN onset during chemotherapy (n = 75) and the FN negative groups (n = 82). The associations of risk factors related to the intraoral environment were assessed. Logistic regression analysis showed that types of blood cancer (odds ratio 1.98; P < 0.01), use of a high-risk regimen (odds ratio 4.44; P < 0.05), prophylaxis treatment with human granulocyte colony-stimulating factor (G-CSF) (odds ratio 4.15; P < 0.01) and PISA (odds ratio 1.02; P < 0.01) were independent factors associated with FN onset. Finally, propensity score matching was performed between two groups; 37 matched pairs were generated. PISA was significantly higher in the FN group than the FN negative group. There was a significant relationship between PISA and FN onset (P = 0.035). The present findings indicate that periodontitis treatment before starting cancer treatment is recommended as supportive care for preventing FN onset during chemotherapy.


Assuntos
Neutropenia Febril Induzida por Quimioterapia/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Neoplasias Hematológicas/tratamento farmacológico , Boca , Periodontite/etiologia , Idoso , Neutropenia Febril Induzida por Quimioterapia/prevenção & controle , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Feminino , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Periodontite/prevenção & controle , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Risco
9.
J Periodontol ; 93(2): 269-286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152611

RESUMO

BACKGROUND: Cytokines play key roles in stimulating periodontal regeneration; however, their exact mechanisms of action remain unclear. Mesenchymal stem cells (MSCs) are multipotent cells that have self-renewal abilities and can differentiate into periodontal tissues such as bone, cementum, and periodontal ligaments following transplantation, like periodontal progenitor cells. Here, we used MSCs to identify the regulatory genes induced by periodontal regenerative cytokines. METHODS: Human MSCs (hMSCs) were cultured under conditions of periodontal regenerative cytokine stimulation or silencing of undifferentiated hMSC transcription factors. To characterize the changes associated with periodontal regenerative cytokine-regulated microRNAs (miRNAs), miRNA, and mRNA expression was evaluated using miRNA arrays and quantitative real-time polymerase chain reaction, respectively. One of the identified miRNAs, miR-628-5p, was then overexpressed or suppressed in hMSCs during osteogenesis; the effect of these changes on osteogenesis was investigated. RESULTS: Cytokine-stimulated MSCs showed characteristic miRNA profiles and mRNA levels of undifferentiated hMSC transcription factors ETV1, SOX11, and GATA6. Next, we silenced these transcription factors in MSCs and examined the miRNA profiles. The levels of miR-628-5p were decreased upon all cytokine treatments and were increased upon silencing of ETV1, SOX11, and GATA6. Overexpression of miR-628-5p suppressed osteogenesis; however, its inhibition enhanced OPN, ALP, OC, BMP2, and RUNX2 mRNA levels, and bone matrix mineralization, but not OSX mRNA or ALP activity. CONCLUSIONS: miR-628-5p negatively regulates MSC stemness during periodontal regeneration. Periodontal regenerative cytokines act as miR-628-5p suppressors to support periodontal regeneration. Thus, selection of effective cytokines for different MSCs, based on miRNA profiling, is important for advancing regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Diferenciação Celular/genética , Células Cultivadas , Citocinas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
10.
Curr Issues Mol Biol ; 43(3): 2157-2166, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940124

RESUMO

Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.


Assuntos
Biomarcadores , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Medicina Regenerativa
11.
Biomedicines ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680525

RESUMO

Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.

12.
World J Clin Cases ; 9(21): 6110-6124, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34368333

RESUMO

BACKGROUND: Generalized periodontitis is a severe periodontal disease characterized by rapid periodontal destruction in healthy persons. This case report describes the treatment of a severe crowding, large overjet, and occlusal collapse due to the loss of anterior guidance with generalized periodontitis. CASE SUMMARY: A 35-year-old female patient with a chief complaint of crowding and maxillary protrusion was diagnosed with generalized periodontitis by clinical and radiographic examinations. To improve crowding and overjet, orthodontic treatment was performed after basic periodontal therapy. Severely damaged upper right lateral incisor and left canine were extracted, and lower right first premolar and left second premolar were also removed to treat severe crowding. After orthodontic treatment, periodontal flap surgery for upper left molars and guided tissue regeneration for the lower left second molar was performed. Then, a dental implant was inserted in the upper left canine legion. The esthetics of the maxillary anterior tooth was improved by prosthetic restorations. The treatment result showed a well-improved occlusion with proper anterior guidance and healthy periodontal tissue after a retention period of 10 years. CONCLUSION: Periodontal, orthodontic, and prosthodontic treatments are extremely useful to improve function and stable periodontal tissue for generalized periodontitis.

13.
J Pers Med ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207600

RESUMO

BACKGROUND: The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. OBJECTIVE: to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. METHODS: The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. RESULTS: The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P-O bond at 960 cm-1 of the mineral component, 785 cm-1, and 855 cm-1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1ß secretion. CONCLUSIONS: These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.

14.
Mol Biol Rep ; 48(6): 5249-5257, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34251558

RESUMO

Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation, which directs the quality of tissue repair. This study aimed to investigate the effect of BDNF on the phagocytic activity of RAW264.7 cells. In addition, we studied the effect of BDNF on guanosine triphosphatase (GTP)-RAS-related C3 botulinus toxin substrate (Rac)1 and phospho-Rac1 levels in RAW264.7 cells. Rac1 inhibitor inhibited BDNF-induced phagocytosis of latex-beads. In addition, BDNF enhanced Porphyromonas gingivalis (Pg) phagocytosis by RAW264.7 cells as well as latex-beads. We demonstrated for the first time that BDNF enhances phagocytic activity of RAW264.7 cells through Rac1 activation. The present study proposes that BDNF may reduce inflammatory stimuli during BDNF-induced periodontal tissue regeneration through enhanced phagocytic activity of macrophages.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ativação de Macrófagos/genética , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Linhagem Celular , Regeneração Tecidual Guiada Periodontal/métodos , Inflamação , Macrófagos/metabolismo , Camundongos , Neuropeptídeos/fisiologia , Fagocitose/fisiologia , Porphyromonas gingivalis/patogenicidade , Células RAW 264.7 , Proteínas rac1 de Ligação ao GTP/fisiologia
15.
FASEB J ; 35(7): e21693, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34109683

RESUMO

Drug-induced gingival overgrowth (DIGO) is a side effect of cyclosporine A (CsA), nifedipine (NIF), and phenytoin (PHT). Nuclear receptor 4A1 (NR4A1) plays a role in fibrosis in multiple organs. However, the relationship between NR4A1 and DIGO remains unclear. We herein investigated the involvement of NR4A1 in DIGO. In the DIGO mouse model, CsA inhibited the up-regulation of Nr4a1 expression induced by periodontal disease (PD) in gingival tissue, but not that of Col1a1 and Pai1. We detected gingival overgrowth (GO) in Nr4a1 knock out (KO) mice with PD. A NR4A1 agonist inhibited the development of GO in DIGO model mice. TGF-ß increased Col1a1 and Pai1 expression levels in KO mouse gingival fibroblasts (mGF) than in wild-type mice, while the overexpression of NR4A1 in KO mGF suppressed the levels. NR4A1 expression levels in gingival tissue were significantly lower in DIGO patients than in PD patients. We also investigated the relationship between nuclear factor of activated T cells (NFAT) and NR4A1. NFATc3 siRNA suppressed the TGF-ß-induced up-regulation of NR4A1 mRNA expression in human gingival fibroblasts (hGF). CsA suppressed the TGF-ß-induced translocation of NFATc3 into the nuclei of hGF. Furthermore, NIF and PHT also decreased NR4A1 mRNA expression levels and suppressed the translocation of NFATc3 in hGF. We confirmed that CsA, NIF, and PHT reduced cytosolic calcium levels increased by TGF-ß, while CaCl2 enhanced the TGF-ß-up-regulated NR4A1 expression. We propose that the suppression of the calcium-NFATc3-NR4A1 cascade by these three drugs plays a role in the development of DIGO.


Assuntos
Cálcio/metabolismo , Ciclosporina/toxicidade , Gengiva/patologia , Imunossupressores/toxicidade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
17.
Diabetol Int ; 12(1): 52-61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33479579

RESUMO

Japan Diabetes Complication and Prevention prospective (JDCP) study was conducted to examine the association between glycemic control and oral conditions in a large database of Japanese patients with diabetes. It included a total of 6099 patients with diabetes (range, 40-75 years) who had been treated as outpatients between 2007 and 2009. The mean number of present teeth at baseline was 19.8 and women with type 2 diabetes had fewer teeth than men with type 2 diabetes. Within the previous year, 17% of all patients had lost teeth. At baseline, 32% had experienced gingival swelling, 69% had brushed more than twice a day, 37% had used interdental cleaning aids, and 43% had undergone regular dental checkups. Multiple logistic regression analysis indicated that type 1 patients with HbA1c ≥ 7.0% were at higher risk of having fewer than 20 teeth (odds ratio [OR] 2.38; 95% confidence interval [CI] 1.25-4.78), and type 2 patients with HbA1c ≥ 8.0% also were at high risk of having fewer than 20 teeth (OR 1.16; 95% CI 1.00-1.34), after adjustment for nine possible confounding factors. In conclusion, patients with diabetes were found to be at high risk of tooth loss, and the poorer the glycemic control, the higher the risk of tooth loss in these patients.

18.
J Periodontal Res ; 56(1): 69-82, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32797637

RESUMO

OBJECTIVE: Periodontitis causes periodontal tissue destruction and results in physiological tooth dysfunction. Therefore, periodontal regeneration is ideal therapy for periodontitis. Mesenchymal stem cells (MSCs) are useful for periodontal regenerative therapy as they can differentiate into periodontal cells; however, the underlying regulatory mechanism is unclear. In this study, we attempted to identify regulatory genes involved in periodontal cell differentiation and clarify the differentiation mechanism for effective periodontal regenerative therapy. BACKGROUND: The cementum and periodontal ligament play important roles in physiological tooth function. Therefore, cementum and periodontal ligament regeneration are critical for periodontal regenerative therapy. Mesenchymal stem cell transplantation can be a common periodontal regenerative therapy because these cells have multipotency and self-renewal ability, which induces new cementum or periodontal ligament formation. Moreover, MSCs can differentiate into cementoblasts. Cementoblast- or periodontal ligament cell-specific proteins have been reported; however, it is unclear how these proteins are regulated. MicroRNA (miRNA) can also act as a key regulator of MSC function. Therefore, in this study, we identified regulatory genes involved in cementoblast or periodontal cell differentiation and commitment. METHODS: Human MSCs (hMSCs), cementoblasts (HCEM), and periodontal ligament cells (HPL cells) were cultured, and mRNA or miRNA expression was evaluated. Additionally, cementoblast-specific genes were overexpressed or suppressed in hMSCs and their expression levels were investigated. RESULTS: HCEM and HPL cells expressed characteristic genes, of which we focused on ets variant 1 (ETV1), miR-628-5p, and miR-383 because ETV1 is a differentiation-related transcription factor, miR-628-5p was the second-highest expressed gene in HCEM and lowest expressed gene in HPL cells, and miR-383 was the highest expressed gene in HCEM. miR-628-5p and miR-383 overexpression in hMSCs regulated ETV1 mRNA expression, and miR-383 overexpression downregulated miR-628-5p expression. Moreover, miR-383 suppression decreased miR-383 expression and enhanced ETV1 mRNA expression, but miR-383 suppression also decreased miR-628-5p. Furthermore, silencing of ETV1 expression in hMSCs regulated miR-628-5p and miR-383 expression. Concerning periodontal cell commitment, miR-628-5p, miR-383, and ETV1 regulated the expression of HCEM- or HPL cell-related genes by adjusting the expression of these miRNAs. CONCLUSION: HCEM and HPL cells show characteristic mRNA and miRNA profiles. In particular, these cells have specific miR-383, miR-628-5p, and ETV1 expression patterns, and these genes interact with each other. Therefore, miR-383, miR-628-5p, and ETV1 are key genes involved in cementogenesis or HPL cell differentiation.


Assuntos
Cemento Dentário , MicroRNAs , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Humanos , MicroRNAs/genética , Ligamento Periodontal , RNA Mensageiro , Fatores de Transcrição/genética
19.
Oral Dis ; 27(6): 1542-1550, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33067895

RESUMO

OBJECTIVE: Whether oral health care during the perioperative period can lead to a better outcome after heart valve surgery has not been adequately elucidated. We examined the effects of perioperative oral care on postoperative inflammation response in patients who underwent heart valve surgery. MATERIALS AND METHODS: In this retrospective cohort study, 223 patients scheduled for single valve heart surgery were divided into the oral care, who underwent professional teeth cleaning or scaling within 3 days prior to surgery, and also following surgery at least twice a week (n = 111), and non-oral care (n = 112) groups. After propensity score matching, records of both groups (80:80) were examined after surgery to evaluate inflammation markers (white blood cell count [WBC], neutrophil/white blood cell ratio [NWR], C-reactive protein [CRP] level, body temperature [BT]). RESULTS: WBC, NWR, CRP level, and BT were increased in both groups the day following surgery. Thereafter, CRP level, WBC, NWR, and BT on various days after surgery in the oral care group showed greater decreases as compared to the non-oral care group. CONCLUSIONS: Perioperative oral health care can decrease postoperative inflammation in patients undergoing heart valve surgery and may be important to ensure a better outcome in those patients.


Assuntos
Proteína C-Reativa , Procedimentos Cirúrgicos Cardíacos , Proteína C-Reativa/análise , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Valvas Cardíacas/química , Valvas Cardíacas/cirurgia , Humanos , Inflamação/etiologia , Contagem de Leucócitos , Estudos Retrospectivos
20.
Arthritis Res Ther ; 22(1): 249, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076980

RESUMO

BACKGROUND: Porphyromonas gingivalis (Pg) infection causes periodontal disease and exacerbates rheumatoid arthritis (RA). It is reported that inoculation of periodontopathogenic bacteria (i.e., Pg) can alter gut microbiota composition in the animal models. Gut microbiota dysbiosis in human has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease. Therefore, this study investigated dysbiosis-mediated arthritis by Pg oral inoculation in an experimental arthritis model mouse. METHODS: Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in serum as well as periodontal, intestinal, and joint tissues were measured by ELISA. Gut microbiota composition was determined by pyrosequencing the 16 s ribosomal RNA genes after DNA purification of mouse feces. Fecal microbiota transplantation (FMT) was performed by transferring Pg-LA-derived feces to normal SKG mice. The effects of Pg peptidylarginine deiminase (PgPAD) on the level of citrullinated proteins and arthritis progression were determined using a PgPAD knockout mutant. RESULTS: Periodontal alveolar bone loss and IL-6 in gingival tissue were induced by Pg oral infection, as well as severe joint destruction, increased arthritis scores (AS), and both IL-6 and CP productions in serum, joint, and intestinal tissues. Distribution of Deferribacteres and S24-7 was decreased, while CP was significantly increased in gingiva, joint, and intestinal tissues of Pg-inoculated experimental arthritis mice compared to experimental arthritis mice without Pg inoculation. Further, FMT from Pg-inoculated experimental arthritis mice reproduced donor gut microbiota and resulted in severe joint destruction with increased IL-6 and CP production in joint and intestinal tissues. The average AS of FMT from Pg-inoculated experimental arthritis was much higher than that of donor mouse. However, inoculation of the PgPAD knockout mutant inhibited the elevation of arthritis scores and ACPA level in serum and reduced CP amount in gingival, joint, and intestinal tissues compared to Pg wild-type inoculation. CONCLUSION: Pg oral infection affected gut microbiota dysbiosis and joint destruction via increased CP generation.


Assuntos
Artrite Experimental , Periodontite , Animais , Disbiose , Camundongos , Porphyromonas gingivalis , Desiminases de Arginina em Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA