Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Rep ; 39(1): 110624, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385735

RESUMO

Neurexins (NRXNs) are key presynaptic cell adhesion molecules that regulate synapse formation and function via trans-synaptic interaction with postsynaptic ligands. Here, we generate cerebellar granule cell (CGC)-specific Nrxn triple-knockout (TKO) mice for complete deletion of all NRXNs. Unexpectedly, most CGCs die in these mice, and this requirement for NRXNs for cell survival is reproduced in cultured CGCs. The axons of cultured Nrxn TKO CGCs that are not in contact with a postsynaptic structure show defects in the formation of presynaptic protein clusters and in action-potential-induced Ca2+ influxes. These cells also show impaired secretion of depolarization-induced, fluorescence-tagged brain-derived neurotrophic factor (BDNF) from their axons, and the cell-survival defect is rescued by the application of BDNF. These results suggest that CGC survival is maintained by autocrine neurotrophic factors and that NRXNs organize the presynaptic protein clusters and the autocrine neurotrophic-factor secretory machinery independent of contact with postsynaptic ligands.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurônios , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular , Células Cultivadas , Cerebelo/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Sinapses/metabolismo
2.
Front Mol Neurosci ; 14: 706494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295222

RESUMO

Six mutations in the salt-inducible kinase 1 (SIK1)-coding gene have been identified in patients with early infantile epileptic encephalopathy (EIEE-30) accompanied by autistic symptoms. Two of the mutations are non-sense mutations that truncate the C-terminal region of SIK1. It has been shown that the C-terminal-truncated form of SIK1 protein affects the subcellular distribution of SIK1 protein, tempting to speculate the relevance to the pathophysiology of the disorders. We generated SIK1-mutant (SIK1-MT) mice recapitulating the C-terminal-truncated mutations using CRISPR/Cas9-mediated genome editing. SIK1-MT protein was distributed in the nucleus and cytoplasm, whereas the distribution of wild-type SIK1 was restricted to the nucleus. We found the disruption of excitatory and inhibitory (E/I) synaptic balance due to an increase in excitatory synaptic transmission and enhancement of neural excitability in the pyramidal neurons in layer 5 of the medial prefrontal cortex in SIK1-MT mice. We also found the increased repetitive behavior and social behavioral deficits in SIK1-MT mice. The risperidone administration attenuated the neural excitability and excitatory synaptic transmission, but the disrupted E/I synaptic balance was unchanged, because it also reduced the inhibitory synaptic transmission. Risperidone also eliminated the repetitive behavior but not social behavioral deficits. These results indicate that risperidone has a role in decreasing neuronal excitability and excitatory synapses, ameliorating repetitive behavior in the SIK1-truncated mice.

3.
J Biochem ; 170(3): 327-336, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33822960

RESUMO

Lysophosphatidylethanolamines (LPEs) are bioactive lysophospholipids that have been suggested to play important roles in several biological processes. We performed a quantitative analysis of LPE species and showed their composition in mouse brain. We examined the roles of oleoyl-LPE (18:1 LPE), which is one of the abundant LPE species in brain. In cultured cortical neurons, application of 18:1 LPE-stimulated neurite outgrowth. The effect of 18:1 LPE on neurite outgrowth was inhibited by Gq/11 inhibitor YM-254890, phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor Go6983 or mitogen-activated protein kinase (MAPK) inhibitor U0126. Additionally, 18:1 LPE increased the phosphorylation of MAPK/extracellular signal-regulated kinase 1/2. These results suggest that the action of 18:1 LPE on neurite outgrowth is mediated by the Gq/11/PLC/PKC/MAPK pathway. Moreover, we found that application of 18:1 LPE protects neurons from glutamate-induced excitotoxicity. This effect of 18:1 LPE was suppressed by PKC inhibitor Go6983. These results suggest that 18:1 LPE protects neurons from glutamate toxicity via PKC inhibitor Go6983-sensitive PKC subtype. Collectively, our results demonstrated that 18:1 LPE stimulates neurite outgrowth and protects against glutamate toxicity in cultured cortical neurons. Our findings provide insights into the physiological or pathological roles of 18:1 LPE in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Lisofosfolipídeos/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Cromatografia Líquida/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fosfolipases Tipo C/metabolismo
4.
Biochem Biophys Res Commun ; 534: 179-185, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298313

RESUMO

Neurite outgrowth is important in neuronal circuit formation and functions, and for regeneration of neuronal networks following trauma and disease in the brain. Thus, identification and characterization of the molecules that regulate neurite outgrowth are essential for understanding how brain circuits form and function and for the development of treatment of neurological disorders. In this study, we found that structurally different lysophosphatidylethanolamine (LPE) species, palmitoyl-LPE (16:0 LPE) and stearoyl-LPE (18:0 LPE), stimulate neurite growth in cultured cortical neurons. Interestingly, YM-254890, an inhibitor of Gq/11 protein, inhibited 16:0 LPE-stimulated neurite outgrowth but not 18:0 LPE-stimulated neurite outgrowth. In contrast, pertussis toxin, an inhibitor of Gi/Go proteins, inhibited 18:0 LPE-stimulated neurite outgrowth but not 16:0 LPE-stimulated neurite outgrowth. The effects of protein kinase C inhibitors on neurite outgrowth were also different. In addition, both 16:0 LPE and 18:0 LPE activate mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2, but the effect of the MAPK inhibitor differed between the 16:0 LPE- and 18:0 LPE-treated cultures. Collectively, the results suggest that the structurally different LPE species, 16:0 LPE and 18:0 LPE stimulate neurite outgrowth through distinct signaling cascades in cultured cortical neurons and that distinct G protein-coupled receptors are involved in these processes.


Assuntos
Lisofosfolipídeos/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Encéfalo/citologia , Butadienos/farmacologia , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Gema de Ovo/química , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Lisofosfolipídeos/química , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Nitrilas/farmacologia , Peptídeos Cíclicos/farmacologia , Toxina Pertussis/farmacologia , Inibidores de Proteínas Quinases/farmacologia
5.
Biochem Biophys Res Commun ; 533(3): 449-457, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32972746

RESUMO

CRISPR/Cas9-mediated gene knock-in in in vivo neurons using in utero electroporation is a powerful technique, but the knock-in efficiency is generally low. We previously demonstrated that co-transfection with RAD51, a key molecule of the initial step of homology-directed repair (HDR), expression vector increased EGFP knock-in efficiency in the ß-actin site up to 2.5-fold in the pyramidal neurons in layer 2/3 of the somatosensory cortex of mouse brain. To further improve the efficiency, we examined the effect of inhibition of DNA ligase IV (LIG4) that is an essential molecule for non-homologous end joining (NHEJ). Co-transfection with small hairpin RNA for LIG4 (shlig4) expression vector increased the EGFP knock-in efficiency in the ß-actin site up to 3.6-fold compared to the condition without shlig4. RAD51 and shlig4 expression vector co-transfection further increased the knock-in efficiency up to 4.7-fold of the control condition. These results suggest that the inhibition of LIG4 is more effective than RAD51 overexpression, and it enhances the effect of RAD51 overexpression on HDR-mediated gene knock-in in vivo neurons.


Assuntos
Encéfalo/metabolismo , Sistemas CRISPR-Cas , DNA Ligase Dependente de ATP/antagonistas & inibidores , Técnicas de Introdução de Genes/métodos , Neurônios/metabolismo , Animais , Células Cultivadas , DNA Ligase Dependente de ATP/genética , Eletroporação , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Transfecção
6.
Biochem Biophys Res Commun ; 524(3): 621-628, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32029273

RESUMO

Gene knock-in using the CRISPR/Cas9 system can be achieved in a specific population of neurons in the mouse brain, by using in utero electroporation to introduce DNA fragments into neural progenitor cells. Using this strategy, we previously knocked-in the EGFP coding sequence into the N-terminal region of the ß-actin gene specifically in the pyramidal neurons in layer 2/3 of the somatosensory cortex. However, the knock-in efficiency was less than 2% of the transfected neurons. In this study, we sought to improve the knock-in efficiency using this system. First, we varied the length of the homology arms of the ß-actin donor template DNA, and found that the knock-in efficiency was increased to ∼14% by extending the length of the 5' and 3' homology arms to 1.6 kb and 2.0 kb, respectively. We then tested the effect of the DNA repair protein RAD51 and the knock-in efficiency was increased up to 2.5-fold when co-transfecting with two different ß-actin and a camk2a targeting EGFP knock-in modules. The RAD51 overexpression did not alter the migration of developing neurons, density or morphology of the dendritic spines compared to those in neurons not transfected with RAD51. RAD51 expression will be useful for increasing the knock-in efficiency in neurons in vivo by CRISPR/Cas9-mediated homology directed repair (HDR).


Assuntos
Encéfalo/citologia , Sistemas CRISPR-Cas/genética , Reparo do DNA por Junção de Extremidades , Técnicas de Introdução de Genes , Neurônios/metabolismo , Actinas/metabolismo , Animais , Sequência de Bases , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos ICR , Células Piramidais/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Rad51 Recombinase
7.
Mol Psychiatry ; 24(7): 1093, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30705427

RESUMO

This article was originally published under standard licence, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the paper have been modified accordingly.

8.
Mol Psychiatry ; 24(7): 1079-1092, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30610199

RESUMO

Calcium/calmodulin-dependent serine protein kinase (CASK) is a membrane-associated guanylate kinase (MAGUK) protein that is associated with neurodevelopmental disorders. CASK is thought to have both pre- and postsynaptic functions, but the mechanism and consequences of its functions in the brain have yet to be elucidated, because homozygous CASK-knockout (CASK-KO) mice die before brain maturation. Taking advantage of the X-chromosome inactivation (XCI) mechanism, here we examined the synaptic functions of CASK-KO neurons in acute brain slices of heterozygous CASK-KO female mice. We also analyzed CASK-knockdown (KD) neurons in acute brain slices generated by in utero electroporation. Both CASK-KO and CASK-KD neurons showed a disruption of the excitatory and inhibitory (E/I) balance. We further found that the expression level of the N-methyl-D-aspartate receptor subunit GluN2B was decreased in CASK-KD neurons and that overexpressing GluN2B rescued the disrupted E/I balance in CASK-KD neurons. These results suggest that the down-regulation of GluN2B may be involved in the mechanism of the disruption of synaptic E/I balance in CASK-deficient neurons.


Assuntos
Guanilato Quinases/deficiência , Guanilato Quinases/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Feminino , Guanilato Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
9.
Neurosci Res ; 127: 53-60, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29221905

RESUMO

Neurexins are a family of presynaptic single-pass transmembrane proteins that act as synaptic organizers in mammals. The neurexins consist of three genes (NRXN1, NRXN2, and NRXN3), each of which produces a longer α- and shorter ß-form. Genomic alterations in NRXN genes have been identified in a wide variety of neuropsychiatric disorders, including autism spectrum disorders (ASD), schizophrenia, intellectual disability (ID), and addiction. Remarkably, a bi-allelic deficiency of NRXN1 was recently linked to Pitt-Hopkins syndrome. The fact that some mono-allelic functional variants of NRXNs are also found in healthy controls indicates that other genetic or environmental factors affect the penetrance of NRXN deficiency. In this review, we summarize the common research methods and representative results of human genetic studies that have implicated NRXN variants in various neuropsychiatric disorders. We also summarize studies of rodent models with NRXN deficiencies that complement our knowledge of human genetics.


Assuntos
Predisposição Genética para Doença/genética , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa
10.
Sci Rep ; 6: 35861, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782168

RESUMO

Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the ß-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged ß-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous ß-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-ß-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons.


Assuntos
Encéfalo/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Sistemas CRISPR-Cas , Eletroporação/métodos , Feminino , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA