Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 140(1): 113-134, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32222824

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a clinically and genetically heterogeneous congenital disease. Symptoms cover a wide spectrum from mild forms to complex phenotypes due to gonadotropin-releasing hormone (GnRH) deficiency. To date, more than 40 genes have been identified as pathogenic cause of CHH. These genes could be grouped into two major categories: genes controlling development and GnRH neuron migration and genes being responsible for neuroendocrine regulation and GnRH neuron function. High-throughput, next-generation sequencing (NGS) allows to analyze numerous gene sequences at the same time. Nowadays, whole exome or whole genome datasets could be investigated in clinical genetic diagnostics due to their favorable cost-benefit. The increasing genetic data generated by NGS reveal novel candidate genes and gene variants with unknown significance (VUSs). To provide clinically valuable genetic results, complex clinical and bioinformatics work are needed. The multifaceted genetics of CHH, the variable mode of inheritance, the incomplete penetrance, variable expressivity and oligogenic characteristics further complicate the interpretation of the genetic variants detected. The objective of this work, apart from reviewing the currently known genes associated with CHH, was to summarize the advantages and disadvantages of the NGS-based platforms and through the authors' own practice to guide through the whole workflow starting from gene panel design, performance analysis and result interpretation. Based on our results, a genetic diagnosis was clearly identified in 21% of cases tested (8/38).


Assuntos
Hipogonadismo/diagnóstico , Hipogonadismo/genética , Animais , Exoma/genética , Variação Genética/genética , Hormônio Liberador de Gonadotropina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hipogonadismo/parasitologia , Patologia Molecular/métodos , Fenótipo
2.
Cancers (Basel) ; 12(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887459

RESUMO

Chromogranin A (CgA) is the most widely accepted biomarker for neuroendocrine tumors (NET) but its diagnostic accuracy is dependent on tumor type and the use of proton-pump inhibitors (PPI). We investigated the diagnostic value of circulating miRNAs along with CgA in pancreatic neuroendocrine tumors (pNET). 74 serum samples from patients with pNET (n = 25, nonfunctioning), pheochromocytoma/paraganglioma (PPGL, n = 20), healthy individuals with normal CgA (n = 29) including 10 samples from 5 healthy individuals with and without current PPI treatment were collected. MiRNA expression profiles were determined using next-generation sequencing, followed by validation with individual TaqMan assays. A global downregulation of miRNAs was observed in patients with NET compared to controls. MiRNA expression of 33 miRNAs was able to discriminate tumor samples from controls. No miRNA alone could be considered as an applicable biomarker for pNET or PPGL. However, using a logistic model, the combination of a set of miRNAs increased the discriminatory role of CgA irrespective of PPI treatment. In pNET patients with normal CgA level our regression model yielded high (89.4%) diagnostic accuracy (AUC: 0.904, sensitivity: 66.6%, specificity: 96.5%). A set of miRNAs increased the diagnostic utility of CgA in pNET even in patients with low CgA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA