Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Compr Psychoneuroendocrinol ; 16: 100196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37577184

RESUMO

Background: Different lines of evidence imply that metformin could alter steroid hormone homeostasis and thereby improve social impairment. Here, we tried to correlate the impact of metformin treatment on alterations in steroid hormones and autism spectrum traits before versus after treatment with metformin. Material & methods: Urine steroid hormones were measured using gas chromatography mass spectrometry in 12 male subjects (54.2 ± 9.1 years, 177.3 ± 4.1 cm, 80 ± 10.4 kg) and 7 female subjects (64.14 ± 18.0 years, 162.7 ± 4.1 cm, 76.1 ± 10.4 kg). Furthermore, a questionnaire on autism spectrum traits (Autism Spectrum Questionnaire]) was administered prior to and after metformin treatment. Results: Overall, a decrease of steroid hormones were detected, which were most pronounced in the metabolites of corticosterone, deoxycortisol, cortisol, as well as androgens. These remained after Bonferroni correction (three classes: glucocorticoid, mineralocorticoid, androgens). No effect on autism spectrum traits (social skills, attention switching skills, attention to detail skills, communication skills, imagination skills), was identified pre versus post metformin treatment. Discussion: The decreased steroid hormone levels are based on different mechanisms; one effect is likely via mitochondria, another effect via activated protein kinase prior to post treatment. The finding on autistic traits must be taxed as negative and do not directly provide an argument for using metformin in the treatment of autism.

3.
Life (Basel) ; 13(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37240739

RESUMO

Background: We recently reported that metformin administration has substantial effects on steroid hormone concentrations. In this study, we specifically explored which enzymatic activities were affected before a first treatment versus after a time of metformin treatment. Material and Methods: Twelve male subjects (54.2 ± 9.1 years, 177.3 ± 4.1 cm, 80 ± 10.4 kg) and seven female subjects (57.2 ± 18.9 years, 162.7 ± 4.1 cm, 76.1 ± 10.4 kg) were recruited based on an indication of metformin. Prior to the first intake of metformin and after 24 h, urine collections were performed. Urine steroid analysis was completed using gas chromatography-mass spectrometry. Results: The average reduction in steroid hormone concentrations after the metformin treatment was substantial and relatively equally distributed in all metabolites and the sum of all metabolites with 35.4%. An exception was dehydroepiandrosterone, with a decrease of almost three hundred percent of average concentration. In addition, the sum of all cortisol metabolites and 18-OH cortisol (indicative of oxidative stress) were lower after the metformin treatment. Furthermore, significant inhibition of 3ß-HSD activity was detectable. Discussion: Effects prior to and after the metformin treatment on inhibiting 3ß-HSD activity were detected in line with findings from others. Furthermore, the pattern of a reduction, for example, in the sum of all glucocorticoids following the metformin treatment supported an effect on oxidative stress, which was further supported by the reduction in 18-OH cortisol. Nevertheless, we do not understand all steps in the complex pattern of the enzymes that affect steroid hormone metabolism and, consequently, further studies are necessary to improve our understanding.

4.
Life (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36362891

RESUMO

Background: Metformin is an effective treatment option for type 2 diabetes mellitus, and it is, to this day, the most prescribed oral antiglycaemic drug. Besides its effects mainly on mitochondrial activity, an off-label use came up as a pharmaceutical for subjects with a diagnosis of polycystic ovarian syndrome (PCOS) along with altered steroid hormone homeostasis. Besides these effects, even an influence on mood and social behavior was described, leading to the aim of this case report to elucidate the effects before versus after treatment with metformin on steroid hormones and social behavior. Methods: A female patient with diagnosed PCOS was analyzed three times for steroid hormone levels. The first analysis was performed before treatment; the second, after a period of 71 days with metformin at 2 × 500 mg; and the third, after a total of 144 days with metformin at 2 × 500 mg. Spot urine probes were taken in the morning for a combined gas chromatography−mass spectrometry (GC-MS), and the steroid levels were adjusted for creatinine excretion. A questionnaire on social behavior (Autism Spectrum Questionnaire) was administered before treatment and after 71 days. Results: A decrease in all the steroid hormones measured was detected after 71 and 144 days of treatment with metformin, being more pronounced after 144 days of treatment and highly significant (p < 0.001). Furthermore, in the untreated state, the class of corticosterone metabolites showed increased values compared to the female reference values for TH-11-DH-corticosterone, TH-corticosterone, and 5a-TH-corticosterone. In the class of estrogen metabolites, increased values compared to the reference values were detected for 17b-estradiol; in the class of 11-deoxycortisol metabolites, an increase in TH-11-deoxycortisol was detected. For the class of cortisol metabolites, increased values compared to the reference values were detected for cortisone, TH-cortisone, a-cortolone, b-cortolone, 20b-dihydrocortisone, cortisol, TH-cortisol, 5a-TH-cortisol, a-cortol, 20b-dihydrocortisol, and 6b-OH-cortisol. No increases in androgen metabolites were detected. Interestingly, weight decreased from 93.4 kg to 91.3 kg after 71 days and fell to 82.7 kg after 144 days of treatment. The skeletal muscle mass was 30.1 kg at the first visit, decreasing to 29.9 kg and to 27.5 kg. No significant difference in the social behavior score from baseline to after 71 days of treatment was detected. Discussion: Metformin improved the steroid hormone profiles from levels above the upper reference values to the middle of the reference values after 71 days and to the lower ends of the reference values after 144 days of treatment. This implies not only that metformin has an effect on steroid hormone levels, but in addition that the efficacy of the pharmaceutical seems to depend on the time interval from intake. To summarize, in this patient, steroid hormones were affected but social behavior was not. If no effect of metformin on social behavior exists, this must be supported by further cases.

5.
Life (Basel) ; 12(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35888087

RESUMO

BACKGROUND: Social behavior is mediated by steroid hormones, whereby various lines of evidence indicate that metformin might improve the symptoms of social withdrawal. This directly yields to the aim of the study to correlate the impact of metformin treatment on the potential alterations in steroid hormone homeostasis, which is ultimately impacting social behavior. Therefore, urinary samples of patients before and after treatment with metformin will be correlated to social behavior to elucidate potential changes in steroid hormone profiles and social behavior. MATERIAL AND METHODS: An observational study in healthy adults with a new indication for metformin. Steroid hormone analysis, including the most prominent androgen, estrogen, progesterone, aldosterone, corticosterone, cortisone and cortisol metabolites analyzed with gas chromatography-mass spectrometry and a questionnaire on social behavior (Autism Spectrum Questionnaire (AQ)) will be administered prior to and after around a 12-week phase of metformin treatment. DISCUSSION: It is likely that due to different pathophysiological mechanisms such as an effect on the respiratory chain in mitochondria or via AMP-activated protein kinase, a general alteration of steroid hormone levels can be detected prior to post treatment. The encompassing measurement of steroid hormones shall give hints concerning the involvement of specific cascades yielding potential pharmacological targets for future research.

6.
Life (Basel) ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888093

RESUMO

Background: Evidence exists that steroid hormones are altered in individuals with autism, especially androgens. Despite lower prevalence in girls than boys, evidence of potential alterations in progesterone metabolites is sparse, so the aim of this study was to elucidate different progesterone metabolites in affected children with autism versus healthy controls. Material and Methods: Circadian urine samples from 48 boys and 16 girls with autism spectrum disorders and a matched case−control group were analysed for progesterone metabolites by gas chromatography−mass spectrometry and normalised for creatinine excretion. Results: In boys with autism, the majority of progesterone metabolites were reduced, such as progesterone, 6a-OH-3a5b-TH-progesterone, or 20a-DH-progesterone (p < 0.01 for all). In girls with autism, a similar pattern of reduction in progesterone metabolites was detected; however, potentially due to the relatively small sample, this pattern was only detectable on the level of a trend. Discussion: As stated, androgen levels are higher in boys and girls with autism, but evidence for progesterone metabolites is much sparser. The pattern of a decrease in progesterone metabolites suggests the existence of an altered routing of steroid metabolites, probably in combination with a dysregulation of the HPAG axis. As, recently, increased CYP17A1 activity has been suggested, the stronger routing towards androgens is further implied in line with our findings of lower progesterone concentrations in boys and girls with autism than healthy controls.

7.
Life (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743898

RESUMO

Background: Increasing evidence exists that higher levels of androgens can be found in individuals with autism. Evidence yields to a susceptible role of Cytochrome P450 17A1 (CYP17A1) with its catalyzation of the two distinct types of substrate oxidation by a hydroxylase activity (17-alpha hydroxylase) and C17/20 lyase activity. However, to what extent steps are altered in affected children with autism versus healthy controls remains to be elucidated. Methods: Urine samples from 48 boys with autism (BMI 19.1 ± 0.6 kg/m2, age 14.2 ± 0.5 years) and a matched cohort of 48 healthy boys (BMI 18.6 ± 0.3 kg/m2, 14.3 ± 0.5 years) as well as 16 girls with autism (BMI 17.5 ± 0.7 kg/m2, age 13.8 ± 1.0 years) and a matched cohort of 16 healthy girls (BMI 17.2 ± 0.8 kg/m2, age 13.2 ± 0.8 years) were analyzed for steroid hormone metabolites by gas chromatography-mass spectrometry. Results: The activity of 17-alpha Hydroxylase increased by almost 50%, whereas activity of 17/20 Lyase activity increased by around 150% in affected children with autism. Furthermore, the concentration of Cortisol was higher as compared to the average increase of the three metabolites TH-Corticosterone, 5α-TH-Corticosterone and TH-11ß-DH-Corticosterone, indicating, in addition, a stimulation by the CRH-ACTH system despite a higher enzymatic activity. Discussion: As it was shown that oxidative stress increases the 17/20-lyase activity via p38α, a link between higher steroid hormone levels and oxidative stress can be established. However, as glucocorticoid as well as androgen metabolites showed higher values in subjects affected with autism as compared to healthy controls, the data indicate, despite higher CYP17A1 activity, the presence of increased substrate availability in line with the Cholesterol theory of autism.

8.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830216

RESUMO

Introduction: There is increasing evidence that steroid hormone levels and, especially, androgen levels are elevated in autism. An overactivity of 17, 20-lyase with a higher production of the testosterone precursors dehydroepiandrosterone (DHEA) and androstenedione/androstenediol seems especially present in autism. Methods: An encompassing literature analysis was performed, searching for altered androgens in children with autism and using preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines. Included were all studies published before 31 March 2021 found using the following electronic databases: PubMed, Google Scholar, Cochrane Library, Scopus, and TRIP. Eight studies with boys and three studies with girls where steroid hormone measurements were performed from either plasma, urine, or saliva were found and analyzed. Analyses were performed for DHEA(-S/-C), androstenedione/androstenediol, and testosterone. Effect sizes were calculated for each parameter between mean concentrations for children with autism versus healthy controls. Results: Higher levels of androgens in autism were detected, with the majority of calculated effect sizes being larger than one. Conclusions: We found higher levels of the main testosterone precursors DHEA, androstenedione, and androstenediol, likely causing an additionally higher level of testosterone, and an increased 17, 20-lyase activity is therefore implied. Medications already used in PCOS such as metformin might be considered to treat hyperandrogenism in autism following further research.


Assuntos
Androgênios/sangue , Transtorno Autístico/sangue , Transtorno Autístico/complicações , Hiperandrogenismo/sangue , Hiperandrogenismo/complicações , Liases/metabolismo , Androstenodiol/sangue , Androstenodiona/sangue , Transtorno Autístico/urina , Criança , Pré-Escolar , Desidroepiandrosterona/sangue , Feminino , Humanos , Hiperandrogenismo/urina , Masculino , Saliva/química , Testosterona/sangue
10.
Diseases ; 9(1)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535392

RESUMO

BACKGROUND: Epitestosterone [E] has for a long time been considered as a biologically inactive androgen. However, recently a distinct antiandrogenic activity of this naturally occurring endogenous epimer of Testosterone has been demonstrated. Especially the ratios of testosterone/epitestosterone (T/E) seem to be key as inhibition of epitestosterone on androgen activity was postulated. As in autism, a higher androgen activity was implied. We, therefore, suggested higher levels of T/E ratios of children with autism versus children with typical development. METHODS: Urine probes of 22 girls with autism (BMI 18.7 ± 4.3; average age 12.3 ± 3.8 years) and a sample of 51 controls (BMI 17.0 ± 2.6; average age 11.9 ± 4 years), as well as 61 boys with autism (BMI 17.04 ± 2. average age 11.9 ± 2.5 years) and 61 control boys (BMI 17.0 ± 2.6; average age 11.1 ± 3.0 years), were analyzed with gas chromatography mass spectrometry. RESULTS: The average T/E ratio of all boys with autism was 2.5 ± 1.8 versus 2.4 ± 1.3 in boys with typical development, respectively. No significant difference between boys with autism versus boys with typical development could be detected (p = 0.977). In girls with autism, the average T/E ratio was 1.4 ± 0.9 versus 2.0 ± 1.4 in girls with typical development, whereby a significant difference could be detected (p = 0.0285). Further, polynomial analysis of the third degree were conducted, showing a dependence from age with reasonable coefficients of determination (0.075 < R2 < 0.22, all samples). DISCUSSION: As encompassing steroid hormone analysis are expensive and work-intensive, we hoped to find an easily applicable biomarker to support diagnostics in autism. However, as a relatively small sample of only 22 girls with autism were analyzed and menstrual cycle and pubertal status were only partly controllable through the matching of BMI and age, the question arises if it was an incidental finding. Nevertheless, one suggestion might be that epitestosterone has the effect of a competitive inhibition on the androgen receptor, which would probably help to explain the higher prevalence of autism in boys as compared to girls. Presumably, as no significant difference was detected in boys, this effect might not be as relevant from a steroid hormone perspective, and other effects such as altered 17/20-hydroxylase activity as previously shown in boys and girls with autism seem to have more relevance. Analysis of larger samples, including plenty of metabolites and enzymatic cascades, as well as the role of backdoor pathway activity of androgen synthesis of girls with autism, are demanded in order to validate current findings of altered steroid hormones in autism.

11.
Naunyn Schmiedebergs Arch Pharmacol ; 394(1): 127-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894324

RESUMO

Various disturbances of social behavior, such as autism, depression, or posttraumatic stress disorder, have been associated with an altered steroid hormone homeostasis and a dysregulation of the hypothalamus-pituitary-adrenal axis. A link between steroid hormone antagonists and the treatment of stress-related conditions has been suggested. We evaluated the effects of stress induction on social behavior in the three chambers and its potential reversibility upon specific steroid hormone antagonism in mice. C57BL/6 mice were stressed twice daily for 8 days by chronic swim testing. Social behavior was evaluated by measuring, first, the preference for sociability and, second, the preference for social novelty in the three-chamber approach before and after the chronic swim test. The reversibility of behavior upon stress induction was analyzed after applying steroid hormone antagonists targeting glucocorticoids with etomidate, mineralocorticoids with potassium canrenoate, and androgens with cyproterone acetate and metformin. In the chronic swim test, increased floating time from 0.8 ± 0.2 min up to 4.8 ± 0.25 min was detected (p < 0.01). In the three-chamber approach, increased preference for sociability and decreased preference for social novelty was detected pre- versus post-stress induction. These alterations of social behavior were barely affected by etomidate and potassium canrenoate, whereas the two androgen antagonists metformin and cyproterone acetate restored social behavior even beyond baseline conditions. The alteration of social behavior was better reversed by the androgen as compared with the glucocorticoid and mineralocorticoid antagonists. This suggests that social behavior is primarily controlled by androgen rather than by glucocorticoid or mineralocorticoid action. The stress-induced changes in preference for sociability are incompletely explained by steroid hormone action alone. As the best response was related to metformin, an effect via glucose levels might confound the results and should be subject to future research.


Assuntos
Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Comportamento Social , Estresse Psicológico , Animais , Comportamento Animal/efeitos dos fármacos , Ácido Canrenoico/farmacologia , Acetato de Ciproterona/farmacologia , Etomidato/farmacologia , Feminino , Hormônios/fisiologia , Hipnóticos e Sedativos/farmacologia , Metformina/farmacologia , Camundongos Endogâmicos C57BL
12.
Anesth Analg ; 131(1): 74-85, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243296

RESUMO

The World Health Organization (WHO) has declared coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic. Global health care now faces unprecedented challenges with widespread and rapid human-to-human transmission of SARS-CoV-2 and high morbidity and mortality with COVID-19 worldwide. Across the world, medical care is hampered by a critical shortage of not only hand sanitizers, personal protective equipment, ventilators, and hospital beds, but also impediments to the blood supply. Blood donation centers in many areas around the globe have mostly closed. Donors, practicing social distancing, some either with illness or undergoing self-quarantine, are quickly diminishing. Drastic public health initiatives have focused on containment and "flattening the curve" while invaluable resources are being depleted. In some countries, the point has been reached at which the demand for such resources, including donor blood, outstrips the supply. Questions as to the safety of blood persist. Although it does not appear very likely that the virus can be transmitted through allogeneic blood transfusion, this still remains to be fully determined. As options dwindle, we must enact regional and national shortage plans worldwide and more vitally disseminate the knowledge of and immediately implement patient blood management (PBM). PBM is an evidence-based bundle of care to optimize medical and surgical patient outcomes by clinically managing and preserving a patient's own blood. This multinational and diverse group of authors issue this "Call to Action" underscoring "The Essential Role of Patient Blood Management in the Management of Pandemics" and urging all stakeholders and providers to implement the practical and commonsense principles of PBM and its multiprofessional and multimodality approaches.


Assuntos
Bancos de Sangue/organização & administração , Transfusão de Sangue , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Doadores de Sangue , COVID-19 , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Medicina Baseada em Evidências , Humanos , Pneumonia Viral/terapia , Pneumonia Viral/transmissão
13.
Diseases ; 8(1)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183287

RESUMO

Evidence of altered cholesterol and steroid hormones in autism is increasing. However, as boys are more often affected, evidence mainly relates to autistic males, whereas evidence for affected autistic girls is sparse. Therefore, a comprehensive gas chromatography mass spectrometry-based steroid hormone metabolite analysis was conducted from autistic girls. Results show increased levels of several steroid hormones, especially in the class of androgens in autistic girls such as testosterone or androstenediol. The increase of the majority of steroid hormones in autistic girls is probably best explained multifactorially by a higher substrate provision in line with the previously developed cholesterol hypothesis of autism.

14.
Behav Sci (Basel) ; 9(5)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075898

RESUMO

Objectives: It is common nowadays to refer to autism as a spectrum. Increased evidence of the involvement of steroid metabolites has been shown by the presence of stronger alterations in Kanner's syndrome compared with Asperger syndrome. Methods: 24 h urine samples were collected from 20 boys with Asperger syndrome, 21 boys with Kanner's syndrome, and identically sized control groups, each matched for age, weight, and height for comprehensive steroid hormone metabolite analysis via gas chromatography-mass spectrometry. Results: Higher levels of most steroid metabolites were detected in boys with Kanner's syndrome and Asperger syndrome compared to their matched controls. These differences were more pronounced in affected individuals with Kanner's syndrome versus Asperger syndrome. Furthermore, a specific and unique pattern of alteration of androsterone, etiocholanolone, progesterone, tetrahydrocortisone, and tetrahydrocortisol was identified in boys with Kanner's syndrome and Asperger syndrome. Interestingly, in both matched samples, only androsterone, etiocholanolone, progesterone, tetrahydrocortisone, tetrahydrocortisol, and 5a-tetrahydrocortisol groups were positively correlated. In the Asperger syndrome group, all metabolites showed a positive correlation. In the Kanner's syndrome group, 5-a tetrahydrocortisol with androsterone showed a positive correlation. Conclusions: Due to differences in the level of alteration, the premise that Asperger syndrome is on the mild side of the autism spectrum and that Kanner's syndrome is on the severe side is supported, but alteration patterns yield different phenotypic expressions.

15.
Blood Transfus ; 15(6): 495-501, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27723449

RESUMO

BACKGROUND: Two selection strategies for newly-registered blood donors are available: a single-visit selection called the standard selection procedure (SSP), and a two-stage selection named predonation and donation screening (PDS). This study reviews the selection strategies for newly-registered donors currently applied in European countries. MATERIAL AND METHODS: We collected data on donor selection procedures, blood donation, laboratory screening and HIV, HCV and HBV positive donors/donations from 2010 to 2013 in 30 European countries by using questionnaires. We grouped the countries according to the applied selection strategy, and for each country, we calculated the 4-year prevalence of confirmed positive results indicating the presence of overall and recent HIV, HCV and HBV infections among first-time and repeat donations and among newly-registered donors. RESULTS: Most of the 24 countries (80%) apply the SSP strategy for selection of newly-registered donors. Twenty-two countries (73.3%) employ a nucleic acid amplification testing in addition to the mandatory serological screening. The survey confirms a higher overall prevalence of HIV, HCV and HBV infections among first-time donations and newly-registered donors than among repeat donations. In contrast, the prevalence of recently acquired HIV and HCV infections was lower among first-time donations and newly-registered donors than among repeat donations, but higher for recent HBV infections (6.7/105 vs 2.6/105 in the SSP setting and 4.3/105 vs 0.5/105 in one country using PDS). The relatively low numbers of infected donors selected by PDS impeded accurate assessment of the prevalence of recent infections in first-time donations. DISCUSSION: The data from European countries provide inconclusive evidence that applying PDS reduces the risk of donations being made in the diagnostic window of first-time donors. The impact of PDS on the risk of window-period donations and blood donor management needs further investigation.


Assuntos
Seleção do Doador/métodos , Doadores de Sangue , Segurança do Sangue , Europa (Continente)/epidemiologia , HIV/isolamento & purificação , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Hepacivirus/isolamento & purificação , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Vírus da Hepatite B/isolamento & purificação , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Humanos
16.
Cell Tissue Bank ; 13(1): 191-202, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21695483

RESUMO

The European Association of Tissue Banks (EATB) Donor Case Workshop and Quality System Case workshop are forums held within the program of the EATB Annual Congress. These workshops offer an opportunity to discuss and evaluate approaches taken to challenging situations, regarding donor selection and quality issues, and strengthen the professional tissue banking and regulatory networks across Europe. This report reflects some of the discussion at the congress workshops and also subsequent correspondence between the various individuals who submitted cases for discussion. The cases presented to the workshops demonstrate that the findings, their interpretation, deducted actions and preventive measures in tissue banks are not predictable. The varied responses and lack of consensus corroborate this and clearly indicate that operating procedures cannot comprehensively cover or prepare for all eventualities. For many of the issues raised there is a lack of information in the published literature. The workshops actively engage participants, representing a wide array of international expertise, in an informal, secure and enjoyable setting, which facilitates learning from peers and provides potential solutions to those submitting cases. By publishing a summary of the discussions, we hope to reach a wider audience and to stimulate individuals to undertake full literature reviews or research on some of the discussed subjects.


Assuntos
Congressos como Assunto , Sociedades Médicas , Bancos de Tecidos/normas , Doadores de Tecidos , Idoso , Condrócitos/microbiologia , Síndrome de Down , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Controle de Qualidade , Fatores de Tempo
17.
Artigo em Alemão | MEDLINE | ID: mdl-21815114

RESUMO

Patient blood management (PBM) is a patient-specific multidisciplinary, multimodal, evidence-based concept to appropriately conserve and manage a patient's own blood as a vital resource. PBM is based on 3 pillars: the first is the optimization of the patient's endogenous red cell mass, the second is the minimization of bleeding and blood loss and the third involves harnessing and optimizing the patient-specific physiological tolerance of anemia, including adopting more restrictive transfusion thresholds. PBM primarily identifies patients at risk of transfusion and provides a management plan aimed at reducing or eliminating the need for allogeneic transfusion, thus reducing the inherent risks, inventory pressures and the escalating costs associated with transfusion. PBM is applicable to surgical and medical patients. The application of PBM systematically reduces the impact of 3 major contributors to negative outcome: anemia, blood loss and transfusion.


Assuntos
Doenças Hematológicas/terapia , Administração dos Cuidados ao Paciente/métodos , Assistência Perioperatória/métodos , Anemia/terapia , Áustria , Benchmarking , Transfusão de Sangue , Transfusão de Eritrócitos , Volume de Eritrócitos , Eritropoetina/uso terapêutico , Doenças Hematológicas/sangue , Humanos , Cuidados Intraoperatórios , Recuperação de Sangue Operatório , Substitutos do Plasma/uso terapêutico , Transfusão de Plaquetas , Cuidados Pós-Operatórios , Complicações Pós-Operatórias/terapia , Cuidados Pré-Operatórios
18.
Artigo em Alemão | MEDLINE | ID: mdl-21688228

RESUMO

Patient blood management (PBM) is a patient-specific multidisciplinary, multimodal, evidence-based concept to appropriately conserve and manage a patient's own blood as a vital resource. PBM is based on 3 pillars: the first is the optimization of the patient's endogenous red cell mass, the second is the minimization of bleeding and blood loss and the third involves harnessing and optimizing the patient-specific physiological tolerance of anemia, including adopting more restrictive transfusion thresholds. PBM primarily identifies patients at risk of transfusion and provides a management plan aimed at reducing or eliminating the need for allogeneic transfusion, thus reducing the inherent risks, inventory pressures and the escalating costs associated with transfusion. PBM is applicable to surgical and medical patients. The application of PBM systematically reduces the impact of 3 major contributors to negative outcome: anemia, blood loss and transfusion.


Assuntos
Anemia/prevenção & controle , Perda Sanguínea Cirúrgica/prevenção & controle , Administração dos Cuidados ao Paciente , Algoritmos , Anemia/etiologia , Anemia/terapia , Transfusão de Eritrócitos , Hemorragia/terapia , Humanos , Transfusão de Plaquetas , Medição de Risco , Reação Transfusional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA