Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(4): 045001, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580460

RESUMO

We demonstrate experimentally that a relativistic electron bunch shaped with a sharp rising edge drives plasma wakefields with one to seven periods along the bunch as the plasma density is increased. The plasma density is varied in the 10(15)-10(17) cm(-3) range. The wakefields generation is observed after the plasma as a periodic modulation of the correlated energy spectrum of the incoming bunch. We choose a low bunch charge of 50 pC for optimum visibility of the modulation at all plasma densities. The longitudinal wakefields creating the modulation are in the MV/m range and are indirect evidence of the generation of transverse wakefields that can seed the self-modulation instability, although the instability does not grow significantly over the short plasma length (2 cm). We show that the seeding provides a phase reference for the wakefields, a necessary condition for the deterministic external injection of a witness bunch in an accelerator. This electron work supports the concept of similar experiments in the future, e.g., SMI experiments using long bunches of relativistic protons.

2.
Phys Rev Lett ; 101(5): 054801, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764397

RESUMO

We demonstrate that trains of subpicosecond electron microbunches, with subpicosecond spacing, can be produced by placing a mask in a region of the beam line where the beam transverse size is dominated by the correlated energy spread. We show that the number, length, and spacing of the microbunches can be controlled through the parameters of the beam and the mask. Such microbunch trains can be further compressed and accelerated and have applications to free electron lasers and plasma wakefield accelerators.

3.
Philos Trans A Math Phys Eng Sci ; 364(1840): 611-22, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16483952

RESUMO

The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.

4.
Phys Rev Lett ; 92(5): 054801, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995313

RESUMO

Laser-driven electron accelerators (laser linacs) offer the potential for enabling much more economical and compact devices. However, the development of practical and efficient laser linacs requires accelerating a large ensemble of electrons together ("trapping") while keeping their energy spread small. This has never been realized before for any laser acceleration system. We present here the first demonstration of high-trapping efficiency and narrow energy spread via laser acceleration. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1 sigma) were demonstrated.

5.
Phys Rev Lett ; 86(18): 4041-3, 2001 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11328090

RESUMO

Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA