Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Structure ; 32(6): 662-678.e8, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508190

RESUMO

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8 that drives self-assembly through π-π stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.


Assuntos
Proteínas de Choque Térmico HSP40 , Multimerização Proteica , Humanos , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Modelos Moleculares , Motivos de Aminoácidos , Cristalografia por Raios X , Ligação Proteica , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Dobramento de Proteína
2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945632

RESUMO

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8, that drives self-assembly through pi-pi stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.

3.
Proteins ; 91(9): 1298-1315, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37519023

RESUMO

Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA