Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(8): 518, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871242

RESUMO

A polyphasic study was designed to resolve the taxonomic position of isolate MGRD01-02T which was recovered from an acidic hot spring in Indonesia and assigned to the genus Actinospica. Phylogenetic analyses based on 16S rRNA gene sequences show that the isolate is most closely related to the type strains of Actinospica acidiphila (98.5%), Actinospica robiniae (97.8%) and Actinospica durhamensis (96.8%). Morphological and chemotaxonomic data underpin the assignment of the isolate to the genus Actinospica as it forms an extensively branched substrate mycelium which carries tufts of white aerial hyphae that differentiate into straight to flexuous chains of cylindrical spores with faint rugose surfaces, contains 2,6-diamino-3-hydroxydiaminopimelic acid in the peptidoglycan, mixtures of hydrogenated menaquinones with nine isoprene units, iso-C 15:O and iso-C 16:O as major fatty acids and phosphatidylethanolamine as the diagnostic phospholipid. Whole-genome sequence analyses show that the isolate, A. durhamensis CSCA 57T and Actinocrinis puniceicyclus DSM 45168T have genome sizes of 7.9, 9.6 and 6.7 Mbp, respectively. A phylogenomic tree shows that they form distinct branches in a well-supported clade, a result supported by associated phenotypic data. Average nucleotide identity and digital DNA:DNA hybridization similarities are below the recommended thresholds for assigning strains to the same species; they also indicate that isolate MGRD01-02T is most closely related to the A. durhamensis and A. robiniae strains. Corresponding amino acid identity and conserved protein data not only support these relationships but also confirm the taxonomic integrity of the genus Actinocrinis. Based on these results, it is proposed that isolate MGRD01-02T (= CCMM B1308T = ICEBB-09T = NCIMB 15218T) be classified in the genus Actinospica as Actinospica acidithermotolerans sp. nov. The draft genome of the isolate and its closest phylogenomic neighbours contain biosynthetic gene clusters with the potential to produce new natural products, notably antibiotics.


Assuntos
Actinobacteria , Fontes Termais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Indonésia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
2.
Antonie Van Leeuwenhoek ; 114(6): 859-873, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33797685

RESUMO

A polyphasic study was designed to determine the taxonomic provenance of a strain, isolate PRKS01-29T, recovered from an Indonesian sand dune and provisionally assigned to the Streptomyces violaceusniger clade. Genomic, genotypic and phenotypic data confirmed this classification. The isolate formed an extensively branched substrate mycelium which carried aerial hyphae that differentiated into spiral chains of rugose ornamented spores, contained LL-as the wall diaminopimelic acid, MK-9 (H6, H8) as predominant isoprenologues, phosphatidylethanolamine as the diagnostic phospholipid and major proportions of saturated, iso- and anteiso- fatty acids. Whole-genome sequences generated for the isolate and Streptomyces albiflaviniger DSM 41598T and Streptomyces javensis DSM 41764T were compared with phylogenetically closely related strains, the isolate formed a branch within the S. violaceusniger clade in the resultant phylogenomic tree. Whole-genome sequences data showed that isolate PRKS01-29T was most closely related to the S. albiflaviniger strain but was distinguished from the latter and from other members of the clade using combinations of phenotypic properties and average nucleotide identity and digital DNA:DNA hybridization scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T = NCIMB 15210T) should be classified in the genus Streptomyces as Streptomyces sabulosicollis sp. nov. It is also clear that streptomycetes which produce spiral chains of rugose ornamented spores form a well-defined monophyletic clade in the Streptomyces phylogenomic tree., the taxonomic status of which requires further study. The genome of the type strain of S. sabulosicollis contains biosynthetic gene clusters predicted to produce new natural products.


Assuntos
Areia , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico , Ácidos Graxos , Indonésia , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Streptomyces/genética
3.
Mar Drugs ; 19(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923039

RESUMO

A Micromonospora strain, isolate MT25T, was recovered from a sediment collected from the Challenger Deep of the Mariana Trench using a selective isolation procedure. The isolate produced two major metabolites, n-acetylglutaminyl glutamine amide and desferrioxamine B, the chemical structures of which were determined using 1D and 2D-NMR, including 1H-15N HSQC and 1H-15N HMBC 2D-NMR, as well as high resolution MS. A whole genome sequence of the strain showed the presence of ten natural product-biosynthetic gene clusters, including one responsible for the biosynthesis of desferrioxamine B. Whilst 16S rRNA gene sequence analyses showed that the isolate was most closely related to the type strain of Micromonospora chalcea, a whole genome sequence analysis revealed it to be most closely related to Micromonospora tulbaghiae 45142T. The two strains were distinguished using a combination of genomic and phenotypic features. Based on these data, it is proposed that strain MT25T (NCIMB 15245T, TISTR 2834T) be classified as Micromonospora provocatoris sp. nov. Analysis of the genome sequence of strain MT25T (genome size 6.1 Mbp) revealed genes predicted to responsible for its adaptation to extreme environmental conditions that prevail in deep-sea sediments.


Assuntos
Desferroxamina/metabolismo , Dipeptídeos/metabolismo , Micromonospora/metabolismo , Desferroxamina/isolamento & purificação , Desferroxamina/farmacologia , Dipeptídeos/isolamento & purificação , Dipeptídeos/farmacologia , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Sedimentos Geológicos/microbiologia , Micromonospora/genética , Estrutura Molecular , Família Multigênica , Filogenia , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA