RESUMO
As a crucial indicator of forest growth and quality, estimating aboveground biomass (AGB) plays a key role in monitoring the global carbon cycle and forest health assessments. Novel methods and applications in remote sensing technology can greatly reduce the investigation time and cost and therefore have the potential to efficiently estimate AGB. Random forest (RF), combined with remote sensing images, is a popular machine learning method that has been widely used for AGB estimation. However, the accuracy of the ordinary linear variable selection method in the AGB estimation of coniferous forests is challenging due to the complexity of these forest biomes. In this study, spectral variables (spectral reflectance and vegetation index), land surface temperature (LST) and soil moisture were extracted from the operational land imager (OLI) and thermal infrared sensor (TIRS) of Landsat 8, and optimized RF regressions were established to estimate the AGB of coniferous forests in the Wangyedian forest farm, Inner Mongolia, Northeast China. We applied one linear (Pearson correlation coefficient (PC)) and four nonlinear (Kendall's τ coefficient (KC), Spearman coefficient (SC), distance correlation coefficient (DC) and the importance index) indices to select variables and establish optimized RF regressions for AGB estimation. The results showed that all the nonlinear indices provided significantly lower estimation errors than the linear index, in which the minimum root mean square error (RMSE) of 40.92 Mg/ha was obtained by the importance index in the nonlinear indices. In addition, the inclusion of LST and soil moisture significantly improved AGB estimation. The RMSE of the models constructed through the five indices decreased by 12.93%, 7.31%, 8.33%, 6.28% and 10.78%, respectively, following the application of the LST variable. In particular, when LST and soil moisture were both added into the model, the RMSE decreased by 31.47%. This study demonstrates that combining the nonlinear variable selection method with optimized RF regression can improve the efficiency of AGB estimation to support regional forest resource management and monitoring.
Assuntos
Solo , Traqueófitas , Biomassa , China , TemperaturaRESUMO
Forest growing stem volume (GSV) reflects the richness of forest resources as well as the quality of forest ecosystems. Remote sensing technology enables robust and efficient GSV estimation as it greatly reduces the survey time and cost while facilitating periodic monitoring. Given its red edge bands and a short revisit time period, Sentinel-2 images were selected for the GSV estimation in Wangyedian forest farm, Inner Mongolia, China. The variable combination was shown to significantly affect the accuracy of the estimation model. After extracting spectral variables, texture features, and topographic factors, a stepwise random forest (SRF) method was proposed to select variable combinations and establish random forest regressions (RFR) for GSV estimation. The linear stepwise regression (LSR), Boruta, Variable Selection Using Random Forests (VSURF), and random forest (RF) methods were then used as references for comparison with the proposed SRF for selection of predictors and GSV estimation. Combined with the observed GSV data and the Sentinel-2 images, the distributions of GSV were generated by the RFR models with the variable combinations determined by the LSR, RF, Boruta, VSURF, and SRF. The results show that the texture features of Sentinel-2's red edge bands can significantly improve the accuracy of GSV estimation. The SRF method can effectively select the optimal variable combination, and the SRF-based model results in the highest estimation accuracy with the decreases of relative root mean square error by 16.4%, 14.4%, 16.3%, and 10.6% compared with those from the LSR-, RF-, Boruta-, and VSURF-based models, respectively. The GSV distribution generated by the SRF-based model matched that of the field observations well. The results of this study are expected to provide a reference for GSV estimation of coniferous plantations.