Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2304611120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590418

RESUMO

Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.


Assuntos
Aurora Quinase A , Mesilato de Imatinib , Niacinamida , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Humanos , Cristalografia por Raios X , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacologia , Niacinamida/química , Niacinamida/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
2.
Proc Natl Acad Sci U S A ; 116(28): 13937-13942, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239342

RESUMO

Despite being the subject of intense effort and scrutiny, kinases have proven to be consistently challenging targets in inhibitor drug design. A key obstacle has been promiscuity and consequent adverse effects of drugs targeting the ATP binding site. Here we introduce an approach to controlling kinase activity by using monobodies that bind to the highly specific regulatory allosteric pocket of the oncoprotein Aurora A (AurA) kinase, thereby offering the potential for more specific kinase modulators. Strikingly, we identify a series of highly specific monobodies acting either as strong kinase inhibitors or activators via differential recognition of structural motifs in the allosteric pocket. X-ray crystal structures comparing AurA bound to activating vs inhibiting monobodies reveal the atomistic mechanism underlying allosteric modulation. The results reveal 3 major advantages of targeting allosteric vs orthosteric sites: extreme selectivity, ability to inhibit as well as activate, and avoidance of competing with ATP that is present at high concentrations in the cells. We envision that exploiting allosteric networks for inhibition or activation will provide a general, powerful pathway toward rational drug design.


Assuntos
Aurora Quinase A/química , Aurora Quinase B/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/genética , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Desenho de Fármacos , Domínio de Fibronectina Tipo III/genética , Humanos , Conformação Proteica , Proteínas Quinases/genética
3.
Elife ; 72018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901437

RESUMO

Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinase Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinase A/química , Aurora Quinase A/metabolismo , Cristalografia por Raios X , Descoberta de Drogas/métodos , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/metabolismo , Cinética , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo
4.
Science ; 355(6322): 289-294, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28008087

RESUMO

With early life likely to have existed in a hot environment, enzymes had to cope with an inherent drop in catalytic speed caused by lowered temperature. Here we characterize the molecular mechanisms underlying thermoadaptation of enzyme catalysis in adenylate kinase using ancestral sequence reconstruction spanning 3 billion years of evolution. We show that evolution solved the enzyme's key kinetic obstacle-how to maintain catalytic speed on a cooler Earth-by exploiting transition-state heat capacity. Tracing the evolution of enzyme activity and stability from the hot-start toward modern hyperthermophilic, mesophilic, and psychrophilic organisms illustrates active pressure versus passive drift in evolution on a molecular level, refutes the debated activity/stability trade-off, and suggests that the catalytic speed of adenylate kinase is an evolutionary driver for organismal fitness.


Assuntos
Adenilil Ciclases/química , Biocatálise , Termotolerância , Adenilil Ciclases/classificação , Adenilil Ciclases/genética , Evolução Molecular , Temperatura Alta , Cinética , Mutação , Filogenia
5.
J Mol Biol ; 428(9 Pt A): 1742-59, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-26996940

RESUMO

The molecular mechanism by which the microtubule-associated protein (MAP) tau regulates the formation of microtubules (MTs) is poorly understood. The activity of tau is controlled via phosphorylation at specific Ser/Thr sites. Of those phosphorylation sites, 17 precede a proline, making them potential recognition sites for the peptidyl-prolyl isomerase Pin1. Pin1 binding and catalysis of phosphorylated tau at the AT180 epitope, which was implicated in Alzheimer's disease, has been reported to be crucial for restoring tau's ability to promote MT polymerization in vitro and in vivo [1]. Surprisingly, we discover that Pin1 does not promote phosphorylated tau-induced MT formation in vitro, refuting the commonly accepted model in which Pin1 binding and catalysis on the A180 epitope restores the function of the Alzheimer's associated phosphorylated tau in tubulin assembly [1, 2]. Using turbidity assays, time-resolved small angle X-ray scattering (SAXS), and time-resolved negative stain electron microscopy (EM), we investigate the mechanism of tau-mediated MT assembly and the role of the Thr231 and Ser235 phosphorylation on this process. We discover novel GTP-tubulin ring-shaped species, which are detectable in the earliest stage of tau-induced polymerization and may play a crucial role in the early nucleation phase of MT assembly. Finally, by NMR and SAXS experiments, we show that the tau molecules must be located on the surface of MTs and tubulin rings during the polymerization reaction. The interaction between tau and tubulin is multipartite, with a high affinity interaction of the four tubulin-binding repeats, and a weaker interaction with the proline-rich sequence and the termini of tau.


Assuntos
Microtúbulos/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Multimerização Proteica , Proteínas tau/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Microtúbulos/química , Microtúbulos/ultraestrutura , Espalhamento a Baixo Ângulo
6.
J Mol Biol ; 428(9 Pt A): 1760-75, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-26996941

RESUMO

Human peptidyl-prolyl isomerase (PPIase) Pin1 plays key roles in developmental processes, cell proliferation, and neuronal function. Extensive phosphorylation of the microtubule binding protein tau has been implicated in neurodegeneration and Alzheimer's disease. For the past 15years, these two players have been the focus of an enormous research effort to unravel the biological relevance of their interplay in health and disease, resulting in a series of proposed molecular mechanism of how Pin1 catalysis of tau results in biological phenotypes. Our results presented here refute these mechanisms of Pin1 action. Using NMR, isothermal calorimetry (ITC), and small angle x-ray scattering (SAXS), we dissect binding and catalysis on multiple phosphorylated tau with particular emphasis toward the Alzheimer's associated AT180 tau epitope containing phosphorylated THR231 and SER235. We find that phosphorylated (p-) SER235-PRO, but not pTHR231-PRO, is exclusively catalyzed by full-length Pin1 and isolated PPIase domain. Importantly, site-specific measurements of Pin1-catalysis of CDK2/CycA-phosphorylated full-length tau reveal a number of sites that are catalyzed simultaneously with different efficiencies. Furthermore, we show that the turnover efficiency at pSER235 by Pin1 is independent of both the WW domain and phosphorylation on THR231. Our mechanistic results on site-specific binding and catalysis together with the lack of an increase of dephosphorylation rates by PP2A counter a series of previously published models for the role of Pin1 catalysis of tau in Alzheimer's disease. Together, our data reemphasize the complicated scenario between binding and catalysis of multiple phosphorylated tau by Pin1 and the need for directly linking biological phenotypes and residue-specific turnover in Pin1 substrates.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Calorimetria , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Espalhamento a Baixo Ângulo
7.
Nat Struct Mol Biol ; 22(2): 124-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25580578

RESUMO

Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg(2+) cofactor activates two distinct molecular events: phosphoryl transfer (>10(5)-fold) and lid opening (10(3)-fold). In contrast, mutation of an essential active site arginine decelerates phosphoryl transfer 10(3)-fold without substantially affecting lid opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares
8.
Elife ; 3: e02667, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24867643

RESUMO

We elucidate the molecular mechanisms of two distinct activation strategies (autophosphorylation and TPX2-mediated activation) in human Aurora A kinase. Classic allosteric activation is in play where either activation loop phosphorylation or TPX2 binding to a conserved hydrophobic groove shifts the equilibrium far towards the active conformation. We resolve the controversy about the mechanism of autophosphorylation by demonstrating intermolecular autophosphorylation in a long-lived dimer by combining X-ray crystallography with functional assays. We then address the allosteric activation by TPX2 through activity assays and the crystal structure of a domain-swapped dimer of dephosphorylated Aurora A and TPX2(1-25). While autophosphorylation is the key regulatory mechanism in the centrosomes in the early stages of mitosis, allosteric activation by TPX2 of dephosphorylated Aurora A could be at play in the spindle microtubules. The mechanistic insights into autophosphorylation and allosteric activation by TPX2 binding proposed here, may have implications for understanding regulation of other protein kinases.DOI: http://dx.doi.org/10.7554/eLife.02667.001.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Regulação Alostérica , Aurora Quinase A/química , Biocatálise , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Humanos , Cinética , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Soluções , Especificidade por Substrato
9.
FEBS J ; 279(2): 275-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22077835

RESUMO

Pyruvate decarboxylase is a key enzyme in organisms whose energy metabolism is based on alcoholic fermentation. The enzyme catalyses the nonoxidative decarboxylation of 2-oxo acids in the presence of the cofactors thiamine diphosphate and magnesium ions. Pyruvate decarboxylase species from yeasts and plant seeds studied to date are allosterically activated by their substrate pyruvate. However, detailed kinetic studies on the enzyme from Neurospora crassa demonstrate for the first time the lack of substrate activation for a yeast pyruvate decarboxylase species. The quaternary structure of this enzyme species is also peculiar because it forms filamentous structures. The complex enzyme structure was analysed using a number of methods, including small-angle X-ray solution scattering, transmission electron microscopy, analytical ultracentrifugation and size-exclusion chromatography. These measurements were complemented by detailed kinetic studies in dependence on the pH.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Neurospora crassa/enzimologia , Piruvato Descarboxilase/química , Piruvato Descarboxilase/metabolismo , Regulação Alostérica , Cromatografia em Gel , Descarboxilação , Ativação Enzimática , Estabilidade Enzimática , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/ultraestrutura , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/ultraestrutura , Estrutura Quaternária de Proteína , Piruvato Descarboxilase/isolamento & purificação , Piruvato Descarboxilase/ultraestrutura , Espalhamento a Baixo Ângulo , Ultracentrifugação , Difração de Raios X
10.
J Biol Chem ; 284(18): 12136-44, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19246454

RESUMO

The mechanism by which the enzyme pyruvate decarboxylase from two yeast species is activated allosterically has been elucidated. A total of seven three-dimensional structures of the enzyme, of enzyme variants, or of enzyme complexes from two yeast species, three of them reported here for the first time, provide detailed atomic resolution snapshots along the activation coordinate. The prime event is the covalent binding of the substrate pyruvate to the side chain of cysteine 221, thus forming a thiohemiketal. This reaction causes the shift of a neighboring amino acid, which eventually leads to the rigidification of two otherwise flexible loops, one of which provides two histidine residues necessary to complete the enzymatically competent active site architecture. The structural data are complemented and supported by kinetic investigations and binding studies, providing a consistent picture of the structural changes occurring upon enzyme activation.


Assuntos
Proteínas Fúngicas/química , Kluyveromyces/enzimologia , Piruvato Descarboxilase/química , Ácido Pirúvico/química , Regulação Alostérica/fisiologia , Ativação Enzimática/fisiologia , Cinética , Estrutura Terciária de Proteína/fisiologia
11.
Protein J ; 26(8): 585-91, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17805949

RESUMO

As a general rule protein concentration typical for structural studies differs considerably from that chosen for kinetic investigations. Consequently, structure-function relationships are often postulated without appropriate knowledge, whether the functional behaviour of the enzyme is the same in both protein concentration ranges. To deal with this question, substrate activation kinetics of two well-characterised yeast pyruvate decarboxylases, from Saccharomyces cerevisiae and from Kluyveromyces lactis, were analysed over the broad protein concentration range 2-2,000 microg/mL. Analytical ultracentrifugation and small-angle X-ray scattering were used to analyse the enzymes' oligomer structure in aqueous solution. For the upper part of the concentration range the determined parameters, like catalytic activity, observed substrate activation rates, sedimentation coefficients and scattering parameters are independent on enzyme concentration changes. No indication of protein aggregation is detectable. However, significant changes occur at low enzyme concentration. The catalytically active tetramer dissociates progressively into dimers with comparable catalytic activity, but with significantly accelerated substrate activation.


Assuntos
Kluyveromyces/enzimologia , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/enzimologia , Catálise , Domínio Catalítico , Dimerização , Ativação Enzimática , Cinética , Piruvato Descarboxilase/química , Piruvato Descarboxilase/isolamento & purificação , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Ultracentrifugação
12.
FEBS J ; 273(18): 4199-209, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16939618

RESUMO

The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis has been determined to 2.26 A resolution. Like other yeast enzymes, Kluyveromyces lactis pyruvate decarboxylase is subject to allosteric substrate activation. Binding of substrate at a regulatory site induces catalytic activity. This process is accompanied by conformational changes and subunit rearrangements. In the nonactivated form of the corresponding enzyme from Saccharomyces cerevisiae, all active sites are solvent accessible due to the high flexibility of loop regions 106-113 and 292-301. The binding of the activator pyruvamide arrests these loops. Consequently, two of four active sites become closed. In Kluyveromyces lactis pyruvate decarboxylase, this half-side closed tetramer is present even without any activator. However, one of the loops (residues 105-113), which are flexible in nonactivated Saccharomyces cerevisiae pyruvate decarboxylase, remains flexible. Even though the tetramer assemblies of both enzyme species are different in the absence of activating agents, their substrate activation kinetics are similar. This implies an equilibrium between the open and the half-side closed state of yeast pyruvate decarboxylase tetramers. The completely open enzyme state is favoured for Saccharomyces cerevisiae pyruvate decarboxylase, whereas the half-side closed form is predominant for Kluyveromyces lactis pyruvate decarboxylase. Consequently, the structuring of the flexible loop region 105-113 seems to be the crucial step during the substrate activation process of Kluyveromyces lactis pyruvate decarboxylase.


Assuntos
Kluyveromyces/enzimologia , Piruvato Descarboxilase/química , Piruvato Descarboxilase/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Kluyveromyces/química , Kluyveromyces/metabolismo , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA