Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38399874

RESUMO

Wear is the leading cause of nozzle failure. The durability of the nozzle is affected by the material it is made from. Traditional materials are ceramics, stainless steel, brass, and polymers. One of the possible ways to improve the wear resistance of polymer nozzles is through the incorporation of dispersed fillers into them. This paper presents the results of testing polymer composites for their chemical resistance to pesticides, examining the effects of different types and amounts of fillers on the chemical and abrasion resistance. When silicon carbide was used as a filler, the strength increased by 30.2%. The experiments on chemical resistance to pesticides revealed that the nature, shape, and volume content of filler particles do not significantly affect the resistance of the compounds obtained. Tests on hydro-abrasive wear have shown that graphite and silicon carbide are effective fillers capable of reducing wear by up to 7.5 times. Based on previous research, it is recommended to use a composite compound with 15% volume of silicon carbide for nozzle manufacturing.

2.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339698

RESUMO

This article presents a developed motion control system for a robotic platform based on laser-ranging methods, a graph traversal algorithm and the search for the optimal path. The algorithm was implemented in an agricultural building and in the field. As a result, the most efficient algorithm for finding the optimal path (A*) for the robotic platform was chosen when performing various technological operations. In the Rviz visualization environment, a program code was developed for planning the movement path and setting the points of the movement trajectory in real time. To find the optimal navigation graph in an artificial garden, an application was developed using the C# programming language and Visual Studio 2019. The results of the experiments showed that field conditions can differ significantly from laboratory conditions, while the positioning accuracy is significantly lower. The statistical processing of the experimental data showed that, for the movement of a robotic platform along a given trajectory in the field, the most effective conditions are as follows: speed: 2.5 km/h; illumination: 109,600 lux; distance to the tree: 0.5 m. An analysis of the operating parameters of the LiDAR sensor showed that it provides a high degree of positioning accuracy under various lighting conditions at various speeds in the aisles of a garden 3 m wide with an inter-stem distance of 1.5 m and a tree crown width of 0.5 m. The use of sensors-rangefinders of the optical range-allows for the performance of positional movements of the robotic platform and ensures the autonomous performance of the basic technological operations of the units in intensive gardens with a deviation from the specified trajectory of no more than 8.4 cm, which meets the agrotechnical requirements.

3.
Plants (Basel) ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631800

RESUMO

A garden plant grafting technique enhanced by cold plasma (CAP) and plasma-treated solutions (PTS) is described for the first time. It has been shown that CAP created by a dielectric barrier discharge (DBD) and PTS makes it possible to increase the growth of Pyrus communis L. by 35-44%, and the diameter of the root collar by 10-28%. In this case, the electrical resistivity of the graft decreased by 20-48%, which indicated the formation of a more developed vascular system at the rootstock-scion interface. The characteristics of DBD CAP and PTS are described in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA