Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826394

RESUMO

While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis -acting element, R ange EX tender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1 . The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh . Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.

2.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
3.
Nat Genet ; 56(4): 675-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509385

RESUMO

Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.


Assuntos
Elementos Facilitadores Genéticos , Mamíferos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Mamíferos/genética , Cromatina/genética
4.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38105996

RESUMO

Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.

5.
Methods Mol Biol ; 2403: 147-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34913122

RESUMO

Embryonic morphogenesis is strictly dependent on tight spatiotemporal control of developmental gene expression, which is typically achieved through the concerted activity of multiple enhancers driving cell type-specific expression of a target gene. Mammalian genomes are organized in topologically associated domains, providing a preferred environment and framework for interactions between transcriptional enhancers and gene promoters. While epigenomic profiling and three-dimensional chromatin conformation capture have significantly increased the accuracy of identifying enhancers, assessment of subregional enhancer activities via transgenic reporter assays in mice remains the gold standard for assigning enhancer activity in vivo. Once this activity is defined, the ideal method to explore the functional necessity of a transcriptional enhancer and its contribution to target gene dosage and morphological or physiological processes is deletion of the enhancer sequence from the mouse genome. Here we present detailed protocols for efficient introduction of enhancer-reporter transgenes and CRISPR-mediated genomic deletions into the mouse genome, including a step-by-step guide for pronuclear microinjection of fertilized mouse eggs. We provide instructions for the assembly and genomic integration of enhancer-reporter cassettes that have been used for validation of thousands of putative enhancer sequences accessible through the VISTA enhancer browser, including a recently published method for robust site-directed transgenesis at the H11 safe-harbor locus. Together, these methods enable rapid and large-scale assessment of enhancer activities and sequence variants in mice, which is essential to understand mammalian genome function and genetic diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Animais , Elementos Facilitadores Genéticos , Técnicas de Transferência de Genes , Genômica , Camundongos
7.
Nat Genet ; 53(4): 521-528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782603

RESUMO

Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Fatores de Transcrição/genética , Alelos , Animais , Sequência de Bases , Sequência Conservada , Embrião de Mamíferos , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Ratos , Fatores de Transcrição/metabolismo
8.
Nat Rev Genet ; 22(5): 324-336, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33442000

RESUMO

Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Humanos
9.
Neuron ; 107(1): 95-111.e6, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380032

RESUMO

Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Terminações Pré-Sinápticas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster , Camundongos , Camundongos Knockout , Junção Neuromuscular/metabolismo
10.
Cell ; 180(6): 1262-1271.e15, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169219

RESUMO

Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.


Assuntos
Elementos Facilitadores Genéticos/genética , Ensaios de Triagem em Larga Escala/métodos , Polidactilia/genética , Animais , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Introdução de Genes/métodos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Polidactilia/metabolismo , RNA não Traduzido/genética
11.
Genome Biol ; 20(1): 140, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307522

RESUMO

BACKGROUND: Despite continual progress in the identification and characterization of trait- and disease-associated variants that disrupt transcription factor (TF)-DNA binding, little is known about the distribution of TF binding deactivating mutations (deMs) in enhancer sequences. Here, we focus on elucidating the mechanism underlying the different densities of deMs in human enhancers. RESULTS: We identify two classes of enhancers based on the density of nucleotides prone to deMs. Firstly, fragile enhancers with abundant deM nucleotides are associated with the immune system and regular cellular maintenance. Secondly, stable enhancers with only a few deM nucleotides are associated with the development and regulation of TFs and are evolutionarily conserved. These two classes of enhancers feature different regulatory programs: the binding sites of pioneer TFs of FOX family are specifically enriched in stable enhancers, while tissue-specific TFs are enriched in fragile enhancers. Moreover, stable enhancers are more tolerant of deMs due to their dominant employment of homotypic TF binding site (TFBS) clusters, as opposed to the larger-extent usage of heterotypic TFBS clusters in fragile enhancers. Notably, the sequence environment and chromatin context of the cognate motif, other than the motif itself, contribute more to the susceptibility to deMs of TF binding. CONCLUSIONS: This dichotomy of enhancer activity is conserved across different tissues, has a specific footprint in epigenetic profiles, and argues for a bimodal evolution of gene regulatory programs in vertebrates. Specifically encoded stable enhancers are evolutionarily conserved and associated with development, while differently encoded fragile enhancers are associated with the adaptation of species.


Assuntos
Adaptação Biológica , Elementos Facilitadores Genéticos , Evolução Molecular , Mutação , Animais , Genes Reporter , Células Hep G2 , Humanos , Camundongos Transgênicos
12.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768887

RESUMO

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Assuntos
Evolução Biológica , Elementos Facilitadores Genéticos , Extremidades/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Serpentes/genética , Animais , Sequência de Bases , Evolução Molecular , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Mutação , Filogenia , Serpentes/classificação
13.
Genomics ; 106(3): 185-192, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26072435

RESUMO

Enhancers or cis-regulatory modules play an instructive role in regulating gene expression during animal development and in response to the environment. Despite their importance, we only have an incomplete map of enhancers in the genome and our understanding of the mechanisms governing their function is still limited. Recent advances in genomics provided powerful tools to generate genome-wide maps of potential enhancers. However, most of these methods are based on indirect measures of enhancer activity and have to be followed by functional testing. Animal transgenesis has been a valuable method to functionally test and characterize enhancers in vivo. In this review I discuss how different transgenic strategies are utilized to characterize enhancers in model organisms focusing on studies in Drosophila and mouse. I will further discuss recent large-scale transgenic efforts to systematically identify and catalog enhancers as well as highlight the challenges and future directions in the field.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Animais , Animais Geneticamente Modificados , Drosophila/genética , Genômica , Camundongos
14.
Nature ; 512(7512): 91-5, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24896182

RESUMO

Transcriptional enhancers are crucial regulators of gene expression and animal development and the characterization of their genomic organization, spatiotemporal activities and sequence properties is a key goal in modern biology. Here we characterize the in vivo activity of 7,705 Drosophila melanogaster enhancer candidates covering 13.5% of the non-coding non-repetitive genome throughout embryogenesis. 3,557 (46%) candidates are active, suggesting a high density with 50,000 to 100,000 developmental enhancers genome-wide. The vast majority of enhancers display specific spatial patterns that are highly dynamic during development. Most appear to regulate their neighbouring genes, suggesting that the cis-regulatory genome is organized locally into domains, which are supported by chromosomal domains, insulator binding and genome evolution. However, 12 to 21 per cent of enhancers appear to skip non-expressed neighbours and regulate a more distal gene. Finally, we computationally identify cis-regulatory motifs that are predictive and required for enhancer activity, as we validate experimentally. This work provides global insights into the organization of an animal regulatory genome and the make-up of enhancer sequences and confirms and generalizes principles from previous studies. All enhancer patterns are annotated manually with a controlled vocabulary and all results are available through a web interface (http://enhancers.starklab.org), including the raw images of all microscopy slides for manual inspection at arbitrary zoom levels.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma de Inseto/genética , Animais , Internet , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Interface Usuário-Computador
15.
Trends Genet ; 29(1): 11-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23102583

RESUMO

Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sequência de Bases , Biologia Computacional , Código Genético/fisiologia , Humanos , Análise de Sequência de DNA , Transcrição Gênica
16.
Genes Dev ; 26(9): 908-13, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22499593

RESUMO

HOT (highly occupied target) regions bound by many transcription factors are considered to be one of the most intriguing findings of the recent modENCODE reports, yet their functions have remained unclear. We tested 108 Drosophila melanogaster HOT regions in transgenic embryos with site-specifically integrated transcriptional reporters. In contrast to prior expectations, we found 102 (94%) to be active enhancers during embryogenesis and to display diverse spatial and temporal patterns, reminiscent of expression patterns for important developmental genes. Remarkably, HOT regions strongly activate nearby genes and are required for endogenous gene expression, as we show using bacterial artificial chromosome (BAC) transgenesis. HOT enhancers have a distinct cis-regulatory signature with enriched sequence motifs for the global activators Vielfaltig, also known as Zelda, and Trithorax-like, also known as GAGA. This signature allows the prediction of HOT versus control regions from the DNA sequence alone.


Assuntos
Padronização Corporal/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sequência de Bases , Embrião não Mamífero/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
17.
Genome Res ; 22(10): 2018-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22534400

RESUMO

The regulation of gene expression is mediated at the transcriptional level by enhancer regions that are bound by sequence-specific transcription factors (TFs). Recent studies have shown that the in vivo binding sites of single TFs differ between developmental or cellular contexts. How this context-specific binding is encoded in the cis-regulatory DNA sequence has, however, remained unclear. We computationally dissect context-specific TF binding sites in Drosophila, Caenorhabditis elegans, mouse, and human and find distinct combinations of sequence motifs for partner factors, which are predictive and reveal specific motif requirements of individual binding sites. We predict that TF binding in the early Drosophila embryo depends on motifs for the early zygotic TFs Vielfaltig (also known as Zelda) and Tramtrack. We validate experimentally that the activity of Twist-bound enhancers and Twist binding itself depend on Vielfaltig motifs, suggesting that Vielfaltig is more generally important for early transcription. Our finding that the motif content can predict context-specific binding and that the predictions work across different Drosophila species suggests that characteristic motif combinations are shared between sites, revealing context-specific motif codes (cis-regulatory signatures), which appear to be conserved during evolution. Taken together, this study establishes a novel approach to derive predictive cis-regulatory motif requirements for individual TF binding sites and enhancers. Importantly, the method is generally applicable across different cell types and organisms to elucidate cis-regulatory sequence determinants and the corresponding trans-acting factors from the increasing number of tissue- and cell-type-specific TF binding studies.


Assuntos
Sítios de Ligação , Biologia Computacional/métodos , Motivos de Nucleotídeos , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Imunoprecipitação da Cromatina , Drosophila/genética , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Ligação Proteica
18.
Chromosoma ; 119(6): 589-600, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20602235

RESUMO

Regulation of replication timing has been a focus of many studies. It has been shown that numerous chromosomal regions switch their replication timing on cell differentiation in Drosophila and mice. However, it is not clear which features of these regions are essential for such regulation. In this study, we examined the organization of late underreplicated regions (URs) of the Drosophila melanogaster genome. When compared with their flanks, these regions showed decreased gene density. A detailed view revealed that these regions originate from unusual combination of short genes and long intergenic spacers. Furthermore, gene expression study showed that this pattern is mostly contributed by short testis-specific genes abundant in the URs. Based on these observations, we developed a genome scanning algorithm and identified 110 regions possessing similar gene density and transcriptional profiles. According to the published data, replication of these regions has been significantly shifted towards late S-phase in two Drosophila cell lines and in polytene chromosomes. Our results suggest that genomic organization of the underreplicated areas of Drosophila polytene chromosomes may be associated with the regulation of their replication timing.


Assuntos
Replicação do DNA , Drosophila melanogaster/genética , Genoma de Inseto , Animais , Ciclo Celular , Cromossomos de Insetos/genética , Drosophila melanogaster/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA