Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Psychiatry Res ; 339: 116063, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39003800

RESUMO

The object of this study is test whether mitochondrial blood-based biomarkers are associated with markers of metabolic syndrome in bipolar disorder, hypothesizing higher lactate but unchanged cell-free circulating mitochondrial DNA levels in bipolar disorder patients with metabolic syndrome. In a cohort study, primary testing from the FondaMental Advanced Centers of Expertise for bipolar disorder (FACE-BD) was conducted, including 837 stable bipolar disorder patients. The I-GIVE validation cohort consists of 237 participants: stable and acute bipolar patients, non-psychiatric controls, and acute schizophrenia patients. Multivariable regression analyses show significant lactate association with triglycerides, fasting glucose and systolic and diastolic blood pressure. Significantly higher levels of lactate were associated with presence of metabolic syndrome after adjusting for potential confounding factors. Mitochondrial-targeted metabolomics identified distinct metabolite profiles in patients with lactate presence and metabolic syndrome, differing from those without lactate changes but with metabolic syndrome. Circulating cell-free mitochondrial DNA was not associated with metabolic syndrome. This thorough analysis mitochondrial biomarkers indicate the associations with lactate and metabolic syndrome, while showing the mitochondrial metabolites can further stratify metabolic profiles in patients with BD. This study is relevant to improve the identification and stratification of bipolar patients with metabolic syndrome and provide potential personalized-therapeutic opportunities.

2.
ACS Omega ; 9(1): 917-924, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222562

RESUMO

Zinc-finger ubiquitin-binding domains (ZnF-UBDs) are noncatalytic domains mostly found in deubiquitylases (DUBs) such as USP3. They represent an underexplored opportunity for the development of deubiquitylase-targeting chimeras (DUBTACs) to pharmacologically induce the deubiquitylation of target proteins. We previously showed that ZnF-UBDs are ligandable domains. Here, a focused small molecule library screen against a panel of 11 ZnF-UBDs led to the identification of compound 59, a ligand engaging the ZnF-UBD of USP3 with a KD of 14 µM. The compound binds the expected C-terminal ubiquitin binding pocket of USP3 as shown by hydrogen-deuterium exchange mass spectrometry experiments and does not inhibit the cleavage of K48-linked diubiquitin by USP3. As such, this molecule is a chemical starting point toward chemical tools that could be used to interrogate the function of the USP3 Znf-UBD and the consequences of recruiting USP3 to ubiquitylated proteins.

3.
Mitochondrion ; 72: 1-10, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419232

RESUMO

Mitochondrial Complex I dysfunction and oxidative stress have been part of the pathophysiology of several diseases ranging from mitochondrial disease to chronic diseases such as diabetes, mood disorders and Parkinson's Disease. Nonetheless, to investigate the potential of mitochondria-targeted therapeutic strategies for these conditions, there is a need further our understanding on how cells respond and adapt in the presence of Complex I dysfunction. In this study, we used low doses of rotenone, a classical inhibitor of mitochondrial complex I, to mimic peripheral mitochondrial dysfunction in THP-1 cells, a human monocytic cell line, and explored the effects of N-acetylcysteine on preventing this rotenone-induced mitochondrial dysfunction. Our results show that in THP-1 cells, rotenone exposure led to increases in mitochondrial superoxide, levels of cell-free mitochondrial DNA, and protein levels of the NDUFS7 subunit. N-acetylcysteine (NAC) pre-treatment ameliorated the rotenone-induced increase of cell-free mitochondrial DNA and NDUFS7 protein levels, but not mitochondrial superoxide. Furthermore, rotenone exposure did not affect protein levels of the NDUFV1 subunit but induced NDUFV1 glutathionylation. In summary, NAC may help to mitigate the effects of rotenone on Complex I and preserve the normal function of mitochondria in THP-1 cells.


Assuntos
Acetilcisteína , Rotenona , Humanos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Rotenona/toxicidade , Células THP-1 , Superóxidos/metabolismo , Estresse Oxidativo , Complexo I de Transporte de Elétrons/metabolismo , DNA Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Microb Genom ; 7(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34227931

RESUMO

Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.


Assuntos
Produtos Agrícolas/microbiologia , Genoma Bacteriano/genética , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas syringae/genética , Tipagem de Sequências Multilocus , Plantas/microbiologia , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas fluorescens/patogenicidade , Pseudomonas syringae/isolamento & purificação , Pseudomonas syringae/patogenicidade , Turquia , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA