Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
IEEE Trans Biomed Circuits Syst ; 18(1): 215-232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37751341

RESUMO

This review article provides a comprehensive overview of impedance-readout integrated circuits (ICs) for electrical impedance spectroscopy (EIS) applications. The readout IC, a crucial component of on-chip EIS systems, significantly affects key performance metrics of the entire system, such as frequency range, power consumption, accuracy, detection range, and throughput. With the growing demand for portable, wearable, and implantable EIS systems in the Internet-of-Things (IoT) era, achieving high energy efficiency while maintaining a wide frequency range, high accuracy, wide dynamic range, and high throughput has become a focus of research. Furthermore, to enhance the miniaturization and convenience of EIS systems, many emerging systems utilize two-electrode or dry electrode configurations instead of the conventional four-electrode configuration with wet electrodes for impedance measurement. In response to these trends, various technologies have been developed to ensure reliable operations even at two- or dry-electrode interfaces. This article reviews the principles, advantages, and disadvantages of techniques employed in state-of-the-art impedance-readout ICs, aiming to achieve high energy efficiency, wide frequency range, high accuracy, wide dynamic range, low noise, high throughput, and/or high input impedance. The thorough review of these advancements will provide valuable insights into the future development of impedance-readout ICs and systems for IoT and biomedical applications.


Assuntos
Espectroscopia Dielétrica , Impedância Elétrica , Eletrodos
2.
IEEE Trans Biomed Circuits Syst ; 17(5): 889-899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37368797

RESUMO

This article presents a wireless and wearable body-pressure-monitoring system for the on-site, real-time prevention of pressure injuries for immobilized patients. For the prevention of pressure-induced skin injuries, a wearable pressure sensor system is designed to monitor the pressure at multiple sites on the skin and to alert the danger of prolonged application of pressure on the skin with a pressure-time integral (PTI) algorithm. The wearable sensor unit is developed using a pressure sensor based on a liquid metal microchannel and integrated with a flexible printed circuit board that includes a thermistor-type temperature sensor. The wearable sensor unit array is connected to the readout system board for the transmission of measured signals to a mobile device or PC via Bluetooth communication. We evaluate the pressure-sensing performances of the sensor unit and the feasibility of the wireless and wearable body-pressure-monitoring system through an indoor test and a preliminary clinical test at the hospital. It is shown that the presented pressure sensor has high-quality performance with excellent sensitivity to detect both high and low pressure. The proposed system measures the pressure at bony sites on the skin for about six hours continuously without any disconnection or failure, and the PTI-based alarming system operates successfully in the clinical setup. The system measures the pressure applied to the patient and provides meaningful information from the measured data for early diagnosis and prevention of bedsores to doctors, nurses, and healthcare workers.


Assuntos
Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Diagnóstico Precoce , Monitorização Fisiológica
3.
Sensors (Basel) ; 22(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684586

RESUMO

This paper presents a wireless kitchen fire prevention system that can detect and notify the fire risk caused by gas stoves. The proposed system consists of two modules. The sensor module detects the concentration of carbon dioxide (CO2) near the gas stove and transmits the monitoring results wirelessly. The alarm module, which is placed in other places, receives the data and reminds the user of the stove status. The sensor module uses a cost-efficient electrochemical CO2 sensor and embeds an in situ algorithm that determines the status of the gas stove based on the measured CO2 concentration. For the wireless communication between the modules, on-off keying (OOK) is employed, thereby achieving a longer battery lifetime of the alarm module, low cost, and simple implementation. To increase the lifetime further, a wake-up function based on passive infrared (PIR) sensing is employed in the alarm module. Our system can successfully detect the on state of the stove within 40 s and the off state within 200 s. Thanks to the low-power implementation, in situ algorithm, and wake-up function, the alarm module's expected battery lifetime is extended to about two months.


Assuntos
Dióxido de Carbono , Fontes de Energia Elétrica , Algoritmos
4.
IEEE Trans Biomed Circuits Syst ; 16(3): 337-360, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35482701

RESUMO

This paper reviews architectures and circuit implementations of on-chip sinusoidal signal generators (SSGs) for electrical impedance spectroscopy (EIS) applications. In recent years, there have been increasing interests in on-chip EIS systems, which measure a target material's impedance spectrum over a frequency range. The on-chip implementation allows EIS systems to have low power and small form factor, enabling various biomedical applications. One of the key building blocks of on-chip EIS systems is on-chip SSG, which determines the frequency range and the analysis precision of the whole EIS system. On-chip SSGs are generally required to have high linearity, wide frequency range, and high power and area efficiency. They are typically composed of three stages in general: waveform generation, linearity enhancement, and current injection. First, a sinusoidal waveform should be generated in SSGs. The generated waveform's frequency should be accurately adjustable over a wide range. The firstly generated waveform may not be perfectly linear, including unwanted harmonics. In the following linearity-enhancement step, these harmonics are attenuated by using filters typically. As the linearity of the waveform is improved, the precision of the EIS system gets ensured. Lastly, the filtered voltage waveform is now converted to a current by a current driver. Then, the current sinusoidal signal is injected into the target impedance. This review discusses the principles, advantages, and disadvantages of various techniques applied to each step in state-of-the-art on-chip SSGs. In addition, state-of-the-art designs are compared and summarized.


Assuntos
Espectroscopia Dielétrica , Impedância Elétrica , Análise de Sequência com Séries de Oligonucleotídeos
5.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214475

RESUMO

This paper presents an error-tolerant and power-efficient impedance measurement scheme for bioimpedance acquisition. The proposed architecture measures the magnitude and the real part of the target complex impedance, unlike other impedance measurement architectures measuring either the real/imaginary components or the magnitude and phase. The phase information of the target impedance is obtained by using the ratio between the magnitude and the real components. This can allow for avoiding direct phase measurements, which require fast, power-hungry circuit blocks. A reference resistor is connected in series with the target impedance to compensate for the errors caused by the delay in the sinusoidal signal generator and the amplifier at the front. Moreover, an additional magnitude measurement path is connected to the reference resistor to cancel out the nonlinearity of the proposed system and enhance the settling speed of the low-pass filter by a ratio-based detection. Thanks to this ratio-based detection, the accuracy is enhanced by 30%, and the settling time is improved by 87.7% compared to the conventional single-path detection. The proposed integrated circuit consumes only 513 µW for a wide frequency range of 10 Hz to 1 MHz, with the maximum magnitude and phase errors of 0.3% and 2.1°, respectively.


Assuntos
Amplificadores Eletrônicos , Espectroscopia Dielétrica , Impedância Elétrica
6.
IEEE Trans Biomed Circuits Syst ; 15(6): 1210-1220, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914595

RESUMO

In this paper, we present a new impedance measurement integrated circuit (IC) for achieving a wideband coverage up to 10 MHz and low power consumption. A frequency-shift technique is applied to down-shift the input frequency, which ranges from 100 kHz to 10 MHz, into an intermediate frequency of 10 kHz, while the frequency-shifting is bypassed when the input frequency falls in the range from 100 Hz to 100 kHz. It results in 100 times relaxation of the requirement on the instrumentation amplifier (IA) bandwidth and the comparator delay, greatly reducing overall power consumption. The proposed IC employs the polar demodulation structure with a reference resistor that provides reference timing information avoiding any synchronization issue with the transmitter. In order to compensate for the comparator delay and nonlinearity of the IA, the reference magnitude measurement path is added, making only the mismatch of the circuit affects the accuracy. This allows for employing the auto-zeroing technique that can remove the offset but increase the absolute delay by using an additional capacitor to the comparator. The chip fabricated in a 0.18- µm CMOS technology consumes the power of 756 µW while covering the measurement frequency range from 100 Hz to 10 MHz and exhibiting the maximum magnitude and phase errors of 1.1 % and 1.9 °, respectively.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7344-7347, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892794

RESUMO

This paper presents a highly scalable readout IC for high-density microelectrode arrays (MEAs). Although the recent development of large-scale high-density MEAs provides opportunities to achieve sub-cellular neural recording over a wide network area, it is challenging to implement the readout IC that can operate with such MEAs. The requirement of high-speed recording in large-scale arrays induces wideband-noise folding, which makes it challenging to achieve a good noise performance for high-fidelity neural recording. Moreover, for the wideband readout, the major noise contributor changes from the readout circuit to the cell-electrode interface. In this paper, we first show why the interface noise becomes the dominant noise source and elucidate its component that contributes the most: sealing resistance. Then, we propose a new readout circuit structure, which can effectively cancel the wideband interface noise. As a result, the signal-to-noise ratio of input neural spike signals is improved dramatically in all cell-attachment or sealing conditions. Particularly, it is shown that under weakly sealed conditions, the spikes can be detected only when the proposed wideband noise cancellation technique is applied.


Assuntos
Microeletrodos , Razão Sinal-Ruído
8.
Sensors (Basel) ; 20(11)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517386

RESUMO

Radiation sensor interfaces for battery-powered mobile dosimeters must consume low power to monitor the amount of radiation exposure over a long period. This paper proposes a power-efficient radiation sensor interface using a peak-triggered sampling scheme. Since the peak of the analog-to-digital converter's (ADC's) input represents radiation energy, our ADC only operates around the peak value thanks to the proposed sampling scheme. Although our ADC operates with a high sampling frequency, this proposed sampling scheme reduces the power consumption of the sensor interface because of the reduced operation time of the ADC. Our sensor interface does not have signal distortion caused by a conventional shaper because the interface quantizes the peak value using the high sampling frequency instead of the shaper. When the radiation input occurs once every 10 µs, the power consumption of the ADC with the proposed sampling scheme is only about 21.5% of the ADC's power consumption when the ADC continuously operates. In this worst case, the fabricated radiation sensor interface in a 0.18-µm complementary metal-oxide-semiconductor (CMOS) process consumes only 1.11 mW.

9.
Sensors (Basel) ; 20(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235311

RESUMO

This paper presents a reconfigurable time-to-digital converter (TDC) used to quantize the phase of the impedance in electrical impedance spectroscopy (EIS). The TDC in the EIS system must handle a wide input-time range for analysis in the low-frequency range and have a high resolution for analysis in the high-frequency range. The proposed TDC adopts a coarse counter to support a wide input-time range and cascaded time interpolators to improve the time resolution in the high-frequency analysis without increasing the counting clock speed. When the same large interpolation factor is adopted, the cascaded time interpolators have shorter measurement time and smaller chip area than a single-stage time interpolator. A reconfigurable time interpolation factor is adopted to maintain the phase resolution with reasonable measurement time. The fabricated TDC has a peak-to-peak phase error of less than 0.72° over the input frequency range from 1 kHz to 512 kHz and the phase error of less than 2.70° when the range is extended to 2.048 MHz, which demonstrates a competitive performance when compared with previously reported designs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-23799645

RESUMO

A suspected sibutramine analogue was detected in a slimming functional food by an ultra performance liquid chromatography-electrospray ionisation-time of flight mass spectrometry (UPLC-ESI-TOF/MS) method. The ultraviolet (UV) spectrum of this suspected compound showed close similarity to that of sibutramine. The sample was extracted with 70% MeOH and isolated by semi-preparative column chromatography. The structure of this compound was identified by spectroscopic analyses (nuclear magnetic resonance [NMR] technique, mass and tandem mass etc.). The structure of the unknown compound was demonstrated to be [(±)-dimethyl-1-[1-(3,4-dichlorophenyl)cyclobutyl]-N,N,3-trimethylbutan-1-amine (molecular formula C17H25NCl2) and named as chloro-sibutramine. Compared with sibutramine, it has one more chlorine atom than the 3-cholorophenyl group so was switched to 3,4-dichlorophenyl. Until now, chloro-sibutramine was isolated for the first time from the undeclared ingredient included in dietary supplements. Although the safety of chloro-sibutramine is unknown, there is a potential health risk to consumers because of a similar skeleton to sibutramine. For public health, this sibutramine analogue has been included in the inspection list of illegal adulterants in Korea.


Assuntos
Depressores do Apetite/análise , Ciclobutanos/análise , Suplementos Nutricionais , Contaminação de Medicamentos , Cromatografia Líquida , Ciclobutanos/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA