RESUMO
BACKGROUND: The aim of this study was to evaluate the influence of sex on facultys' perception of resident autonomy and performance. METHODS: Autonomy/performance/complexity evaluations performed by faculty of categorical general surgery residents (2015-2021) were analyzed. Comparisons of scores by faculty and resident sex were performed. RESULTS: A total of 10967 paper/electronic evaluations were collected. Female attendings rated female residents significantly lower in autonomy when compared to males (2.75 vs 2.91, p â= â0.0037). There was no significant difference in autonomy ratings for male versus female residents when evaluated by a male attending (2.93 vs 2.96, p â= â0.054) but male attendings did rate female residents significantly lower in autonomy at the highest complexities (2.37 vs 2.50, p â= â0.012). CONCLUSION: The data suggests a unique interaction between attending and resident sex. A periodic evaluation of evaluations within one's program may provide invaluable implicit bias insight and should be considered.
Assuntos
Cirurgia Geral , Internato e Residência , Humanos , Masculino , Feminino , Salas Cirúrgicas , Competência Clínica , Autonomia Profissional , Docentes de Medicina , Cirurgia Geral/educaçãoRESUMO
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains. Here, we demonstrate that the mucinase SmE has a unique ability to cleave at residues bearing very complex glycans. SmE enables improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we perform molecular dynamics (MD) simulations of TIM-3 and -4 to understand how glycosylation affects structural features of these proteins. Finally, we use these models to investigate the functional relevance of glycosylation for TIM-3 function and ligand binding. Overall, we present a powerful workflow to better understand the detailed molecular structures and functions of the mucinome.
Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Mucinas , Mucinas/metabolismo , Polissacarídeo-Liases , Polissacarídeos/químicaRESUMO
High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates glycopeptides in the gas phase prior to mass spectrometry (MS) analysis, thus offering the potential to analyze glycopeptides without prior enrichment. Several studies have demonstrated the ability of FAIMS to enhance glycopeptide detection but have primarily focused on N-glycosylation. Here, we evaluated FAIMS for O-glycoprotein and mucin-domain glycoprotein analysis using samples of varying complexity. We demonstrated that FAIMS was useful in increasingly complex samples as it allowed for the identification of more glycosylated species. However, during our analyses, we observed a phenomenon called "in FAIMS fragmentation" (IFF) akin to in source fragmentation but occurring during FAIMS separation. FAIMS experiments showed a 2- to 5-fold increase in spectral matches from IFF compared with control experiments. These results were also replicated in previously published data, indicating that this is likely a systemic occurrence when using FAIMS. Our study highlights that although there are potential benefits to using FAIMS separation, caution must be exercised in data analysis because of prevalent IFF, which may limit its applicability in the broader field of O-glycoproteomics.
RESUMO
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key checkpoint inhibitors in cancer. However, their dense O-glycosylation remains enigmatic both in terms of glycoproteomic landscape and structural dynamics, primarily due to the challenges associated with studying mucin domains. Here, we present a mucinase (SmE) and demonstrate its ability to selectively cleave along the mucin glycoprotein backbone, similar to others of its kind. Unlike other mucinases, though, SmE harbors the unique ability to cleave at residues bearing extremely complex glycans which enabled improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we performed molecular dynamics (MD) simulations of TIM-3 and -4 to demonstrate how glycosylation affects structural features of these proteins. Overall, we present a powerful workflow to better understand the detailed molecular structures of the mucinome.
RESUMO
Cephalopelvic disproportion (CPD)-related obstructed labor is accountable for 3-8% of the maternal deaths worldwide. The consequence of CPD-related obstructive labor in the absence of a Caesarian section (C/S) is often maternal or perinatal mortality or morbidity to the mother and/or the infant. Accurate and timely referral of at-risk mothers to health facilities where C/S is a delivery option could reduce maternal mortality in the developing world. The goal of this work was to develop and test the feasibility of a safe, low-cost, easy-to-use, portable tool, using a Microsoft Kinect 3D camera, to identify women at risk for obstructed labor due to CPD. Magnetic resonance imaging (MRI) scans, 3D camera imaging, anthropometry and clinical pelvimetry were collected and analyzed from women 18-40 years of age, at gestational age ≥36+0 weeks with previous C/S due to CPD (n = 43), previous uncomplicated vaginal deliveries (n = 96), and no previous obstetric history (n = 148) from Addis Ababa, Ethiopia. Novel and published CPD risk scores based on anthropometry, clinical pelvimetry, MRI, and Kinect measurements were compared. Significant differences were observed in most anthropometry, clinical pelvimetry, MRI and Kinect measurements between women delivering via CPD-related C/S versus those delivering vaginally. The area under the receiver-operator curve from novel CPD risk scores base on MRI-, Kinect-, and anthropometric-features outperformed novel CPD risk scores based on clinical pelvimetry and previously published indices for CPD risk calculated from these data; e.g., pelvic inlet area, height, and fetal-pelvic index. This work demonstrates the feasibility of a 3D camera-based platform for assessing CPD risk as a novel, safe, scalable approach to better predict risk of CPD in Ethiopia and warrants the need for further blinded, prospective studies to refine and validate the proposed CPD risk scores, which are required before this method can be applied clinically.
Assuntos
Desproporção Cefalopélvica/diagnóstico por imagem , Pelvimetria/métodos , Medição de Risco/métodos , Adulto , Antropometria/métodos , Cesárea , Parto Obstétrico/métodos , Etiópia , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Mortalidade Materna , Pessoa de Meia-Idade , Complicações do Trabalho de Parto , Gravidez , Estudos Prospectivos , Fatores de Risco , Adulto JovemRESUMO
OBJECTIVE: It was proposed that the ability to recognize facial emotions is closely related to complex neurocognitive processes and/or skills related to theory of mind (ToM). This study examines whether ToM skills mediate the relationship between higher neurocognitive functions, such as reasoning ability, and facial emotion recognition. METHODS: A total of 200 healthy subjects (101 males, 99 females) were recruited. Facial emotion recognition was measured through the use of 64 facial emotional stimuli that were selected from photographs from the Korean Facial Expressions of Emotion (KOFEE). Participants were requested to complete the Theory of Mind Picture Stories task and Standard Progressive Matrices (SPM). RESULTS: Multiple regression analysis showed that the SPM score (t=3.19, p=0.002, ß=0.22) and the overall ToM score (t=2.56, p=0.011, ß=0.18) were primarily associated with a total hit rate (%) of the emotion recognition task. Hierarchical regression analysis through a three-step mediation model showed that ToM may partially mediate the relationship between SPM and performance on facial emotion recognition. CONCLUSION: These findings imply that higher neurocognitive functioning, inclusive of reasoning, may not only directly contribute towards facial emotion recognition but also influence ToM, which in turn, influences facial emotion recognition. These findings are particularly true for healthy young people.