Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Heliyon ; 10(10): e31000, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826743

RESUMO

Objective: Most prognostic indexes for ischemic stroke mortality lack radiologic information. We aimed to create and validate a deep learning-based mortality prediction model using brain diffusion weighted imaging (DWI), apparent diffusion coefficient (ADC), and clinical factors. Methods: Data from patients with ischemic stroke who admitted to tertiary hospital during acute periods from 2013 to 2019 were collected and split into training (n = 1109), validation (n = 437), and internal test (n = 654). Data from patients from secondary cardiovascular center was used for external test set (n = 507). The algorithm for predicting mortality, based on DWI and ADC (DLP_DWI), was initially trained. Subsequently, important clinical factors were integrated into this model to create the integrated model (DLP_INTG). The performance of DLP_DWI and DLP_INTG was evaluated by using time-dependent area under the receiver operating characteristic curves (TD AUCs) and Harrell concordance index (C-index) at one-year mortality. Results: The TD AUC of DLP_DWI was 0.643 in internal test set, and 0.785 in the external dataset. DLP_INTG had a higher performance at predicting one-year mortality than premise score in internal dataset (TD- AUC: 0.859 vs. 0.746; p = 0.046), and in external dataset (TD- AUC: 0.876 vs. 0.808; p = 0.007). DLP_DWI and DLP_INTG exhibited strong discrimination for the high-risk group for one-year mortality. Interpretation: A deep learning model using brain DWI, ADC and the clinical factors was capable of predicting mortality in patients with ischemic stroke.

2.
Intern Med ; 63(6): 773-780, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558487

RESUMO

Objective Contrast agents used for radiological examinations are an important cause of acute kidney injury (AKI). We developed and validated a machine learning and clinical scoring prediction model to stratify the risk of contrast-induced nephropathy, considering the limitations of current classical and machine learning models. Methods This retrospective study included 38,481 percutaneous coronary intervention cases from 23,703 patients in a tertiary hospital. We divided the cases into development and internal test sets (8:2). Using the development set, we trained a gradient boosting machine prediction model (complex model). We then developed a simple model using seven variables based on variable importance. We validated the performance of the models using an internal test set and tested them externally in two other hospitals. Results The complex model had the best area under the receiver operating characteristic (AUROC) curve at 0.885 [95% confidence interval (CI) 0.876-0.894] in the internal test set and 0.837 (95% CI 0.819-0.854) and 0.850 (95% CI 0.781-0.918) in two different external validation sets. The simple model showed an AUROC of 0.795 (95% CI 0.781-0.808) in the internal test set and 0.766 (95% CI 0.744-0.789) and 0.782 (95% CI 0.687-0.877) in the two different external validation sets. This was higher than the value in the well-known scoring system (Mehran criteria, AUROC=0.67). The seven precatheterization variables selected for the simple model were age, known chronic kidney disease, hematocrit, troponin I, blood urea nitrogen, base excess, and N-terminal pro-brain natriuretic peptide. The simple model is available at http://52.78.230.235:8081/Conclusions We developed an AKI prediction machine learning model with reliable performance. This can aid in bedside clinical decision making.


Assuntos
Injúria Renal Aguda , Tomada de Decisão Clínica , Humanos , Medição de Risco/métodos , Estudos Retrospectivos , Aprendizado de Máquina , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico
3.
Korean Circ J ; 53(11): 758-771, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37973386

RESUMO

BACKGROUND AND OBJECTIVES: Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. METHODS: A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. RESULTS: A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. CONCLUSIONS: The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

4.
Clin Exp Emerg Med ; 10(4): 438-445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012820

RESUMO

OBJECTIVE: Based on the development of artificial intelligence (AI), an emerging number of methods have achieved outstanding performances in the diagnosis of acute myocardial infarction (AMI) using an electrocardiogram (ECG). However, AI-ECG analysis using a multicenter prospective design for detecting AMI has yet to be conducted. This prospective multicenter observational study aims to validate an AI-ECG model for detecting AMI in patients visiting the emergency department. METHODS: Approximately 9,000 adult patients with chest pain and/or equivalent symptoms of AMI will be enrolled in 18 emergency medical centers in Korea. The AI-ECG analysis algorithm we developed and validated will be used in this study. The primary endpoint is the diagnosis of AMI on the day of visiting the emergency center, and the secondary endpoint is a 30-day major adverse cardiac event. From March 2022, patient registration has begun at centers approved by the institutional review board. DISCUSSION: This is the first prospective study designed to identify the efficacy of an AI-based 12-lead ECG analysis algorithm for diagnosing AMI in emergency departments across multiple centers. This study may provide insights into the utility of deep learning in detecting AMI on electrocardiograms in emergency departments. Trial registration ClinicalTrials.gov identifier: NCT05435391. Registered on June 28, 2022.

5.
Am J Obstet Gynecol MFM ; 5(12): 101184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863197

RESUMO

BACKGROUND: Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricular systolic dysfunction. Left ventricular dysfunction can result in abnormalities in electrocardiography. However, the usefulness of electrocardiography in the identification of peripartum cardiomyopathy in pregnant women remains unclear. OBJECTIVE: This study aimed to evaluate the effectiveness of a 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device for screening peripartum cardiomyopathy. STUDY DESIGN: This retrospective cohort study included pregnant women who underwent transthoracic echocardiography between a month before and 5 months after delivery and underwent 12-lead electrocardiography within 30 days of echocardiography between December 2011 and May 2022 at Seoul National University Hospital. The performance of 12-lead electrocardiography-based artificial intelligence/machine learning analysis (AiTiALVSD software; version 1.00.00, which was developed to screen for left ventricular systolic dysfunction in the general population) was evaluated for the identification of peripartum cardiomyopathy. In addition, the performance of another artificial intelligence/machine learning algorithm using only 1-lead electrocardiography to detect left ventricular systolic dysfunction was evaluated in identifying peripartum cardiomyopathy. The results were obtained under a 95% confidence interval and considered significant when P<.05. RESULTS: Among the 14,557 women who delivered during the study period, 204 (1.4%) underwent transthoracic echocardiography a month before and 5 months after delivery. Among them, 12 (5.8%) were diagnosed with peripartum cardiomyopathy. The results showed that AiTiALVSD for 12-lead electrocardiography was highly effective in detecting peripartum cardiomyopathy, with an area under the receiver operating characteristic of 0.979 (95% confidence interval, 0.953-1.000), an area under the precision-recall curve of 0.715 (95% confidence interval, 0.499-0.951), a sensitivity of 0.917 (95% confidence interval, 0.760-1.000), a specificity of 0.927 (95% confidence interval, 0.890-0.964), a positive predictive value of 0.440 (95% confidence interval, 0.245-0.635), and a negative predictive value of 0.994 (95% confidence interval, 0.983-1.000). In addition, a 1-lead (lead I) artificial intelligence/machine learning algorithm showed excellent performance; the area under the receiver operating characteristic, area under the precision-recall curve, sensitivity, specificity, positive predictive value, and negative predictive value were 0.944 (95% confidence interval, 0.895-0.993), 0.520 (95% confidence interval, 0.319-0.801), 0.833 (95% confidence interval, 0.622-1.000), 0.880 (95% confidence interval, 0.834-0.926), 0.303 (95% confidence interval, 0.146-0.460), and 0.988 (95% confidence interval, 0.972-1.000), respectively. CONCLUSION: The 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device (AiTiALVSD) and 1-lead algorithm are noninvasive and effective ways of identifying cardiomyopathies occurring during the peripartum period, and they could potentially be used as highly sensitive screening tools for peripartum cardiomyopathy.


Assuntos
Cardiomiopatias , Aprendizado Profundo , Disfunção Ventricular Esquerda , Humanos , Feminino , Gravidez , Função Ventricular Esquerda , Volume Sistólico , Estudos Retrospectivos , Inteligência Artificial , Período Periparto , Eletrocardiografia , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/epidemiologia
6.
PLoS One ; 17(8): e0272055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35944013

RESUMO

To develop deep learning models for predicting Interoperative hypotension (IOH) using waveforms from arterial blood pressure (ABP), electrocardiogram (ECG), and electroencephalogram (EEG), and to determine whether combination ABP with EEG or CG improves model performance. Data were retrieved from VitalDB, a public data repository of vital signs taken during surgeries in 10 operating rooms at Seoul National University Hospital from January 6, 2005, to March 1, 2014. Retrospective data from 14,140 adult patients undergoing non-cardiac surgery with general anaesthesia were used. The predictive performances of models trained with different combinations of waveforms were evaluated and compared at time points at 3, 5, 10, 15 minutes before the event. The performance was calculated by area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), sensitivity and specificity. The model performance was better in the model using both ABP and EEG waveforms than in all other models at all time points (3, 5, 10, and 15 minutes before an event) Using high-fidelity ABP and EEG waveforms, the model predicted IOH with a AUROC and AUPRC of 0.935 [0.932 to 0.938] and 0.882 [0.876 to 0.887] at 5 minutes before an IOH event. The output of both ABP and EEG was more calibrated than that using other combinations or ABP alone. The results demonstrate that a predictive deep neural network can be trained using ABP, ECG, and EEG waveforms, and the combination of ABP and EEG improves model performance and calibration.


Assuntos
Aprendizado Profundo , Hipotensão , Adulto , Pressão Arterial/fisiologia , Pressão Sanguínea , Eletrocardiografia/métodos , Eletroencefalografia , Humanos , Hipotensão/diagnóstico , Estudos Retrospectivos
7.
J Med Internet Res ; 24(7): e37928, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896020

RESUMO

BACKGROUND: A clinical decision support system (CDSS) is recognized as a technology that enhances clinical efficacy and safety. However, its full potential has not been realized, mainly due to clinical data standards and noninteroperable platforms. OBJECTIVE: In this paper, we introduce the common data model-based intelligent algorithm network environment (CANE) platform that supports the implementation and deployment of a CDSS. METHODS: CDSS reasoning engines, usually represented as R or Python objects, are deployed into the CANE platform and converted into C# objects. When a clinician requests CANE-based decision support in the electronic health record (EHR) system, patients' information is transformed into Health Level 7 Fast Healthcare Interoperability Resources (FHIR) format and transmitted to the CANE server inside the hospital firewall. Upon receiving the necessary data, the CANE system's modules perform the following tasks: (1) the preprocessing module converts the FHIRs into the input data required by the specific reasoning engine, (2) the reasoning engine module operates the target algorithms, (3) the integration module communicates with the other institutions' CANE systems to request and transmit a summary report to aid in decision support, and (4) creates a user interface by integrating the summary report and the results calculated by the reasoning engine. RESULTS: We developed a CANE system such that any algorithm implemented in the system can be directly called through the RESTful application programming interface when it is integrated with an EHR system. Eight algorithms were developed and deployed in the CANE system. Using a knowledge-based algorithm, physicians can screen patients who are prone to sepsis and obtain treatment guides for patients with sepsis with the CANE system. Further, using a nonknowledge-based algorithm, the CANE system supports emergency physicians' clinical decisions about optimum resource allocation by predicting a patient's acuity and prognosis during triage. CONCLUSIONS: We successfully developed a common data model-based platform that adheres to medical informatics standards and could aid artificial intelligence model deployment using R or Python.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Sepse , Inteligência Artificial , Registros Eletrônicos de Saúde , Nível Sete de Saúde , Humanos , Bases de Conhecimento
8.
J Korean Med Sci ; 37(16): e122, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470597

RESUMO

BACKGROUND: The quick sequential organ failure assessment (qSOFA) score is suggested to use for screening patients with a high risk of clinical deterioration in the general wards, which could simply be regarded as a general early warning score. However, comparison of unselected admissions to highlight the benefits of introducing qSOFA in hospitals already using Modified Early Warning Score (MEWS) remains unclear. We sought to compare qSOFA with MEWS for predicting clinical deterioration in general ward patients regardless of suspected infection. METHODS: The predictive performance of qSOFA and MEWS for in-hospital cardiac arrest (IHCA) or unexpected intensive care unit (ICU) transfer was compared with the areas under the receiver operating characteristic curve (AUC) analysis using the databases of vital signs collected from consecutive hospitalized adult patients over 12 months in five participating hospitals in Korea. RESULTS: Of 173,057 hospitalized patients included for analysis, 668 (0.39%) experienced the composite outcome. The discrimination for the composite outcome for MEWS (AUC, 0.777; 95% confidence interval [CI], 0.770-0.781) was higher than that for qSOFA (AUC, 0.684; 95% CI, 0.676-0.686; P < 0.001). In addition, MEWS was better for prediction of IHCA (AUC, 0.792; 95% CI, 0.781-0.795 vs. AUC, 0.640; 95% CI, 0.625-0.645; P < 0.001) and unexpected ICU transfer (AUC, 0.767; 95% CI, 0.760-0.773 vs. AUC, 0.716; 95% CI, 0.707-0.718; P < 0.001) than qSOFA. Using the MEWS at a cutoff of ≥ 5 would correctly reclassify 3.7% of patients from qSOFA score ≥ 2. Most patients met MEWS ≥ 5 criteria 13 hours before the composite outcome compared with 11 hours for qSOFA score ≥ 2. CONCLUSION: MEWS is more accurate that qSOFA score for predicting IHCA or unexpected ICU transfer in patients outside the ICU. Our study suggests that qSOFA should not replace MEWS for identifying patients in the general wards at risk of poor outcome.


Assuntos
Deterioração Clínica , Escore de Alerta Precoce , Sepse , Adulto , Humanos , Escores de Disfunção Orgânica , Quartos de Pacientes , Estudos Retrospectivos , Sepse/diagnóstico
9.
Korean J Physiol Pharmacol ; 26(3): 195-205, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477547

RESUMO

Determining blood loss [100% - RBV (%)] is challenging in the management of haemorrhagic shock. We derived an equation estimating RBV (%) via serial haematocrits (Hct1, Hct2) by fixing infused crystalloid fluid volume (N) as [0.015 × body weight (g)]. Then, we validated it in vivo. Mathematically, the following estimation equation was derived: RBV (%) = 24k / [(Hct1 / Hct2) - 1]. For validation, nonongoing haemorrhagic shock was induced in Sprague-Dawley rats by withdrawing 20.0%-60.0% of their total blood volume (TBV) in 5.0% intervals (n = 9). Hct1 was checked after 10 min and normal saline N cc was infused over 10 min. Hct2 was checked five minutes later. We applied a linear equation to explain RBV (%) with 1 / [(Hct1 / Hct2) - 1]. Seven rats losing 30.0%-60.0% of their TBV suffered shock persistently. For them, RBV (%) was updated as 5.67 / [(Hct1 / Hct2) - 1] + 32.8 (95% confidence interval [CI] of the slope: 3.14-8.21, p = 0.002, R2 = 0.87). On a Bland-Altman plot, the difference between the estimated and actual RBV was 0.00 ± 4.03%; the 95% CIs of the limits of agreements were included within the pre-determined criterion of validation (< 20%). For rats suffering from persistent, non-ongoing haemorrhagic shock, we derived and validated a simple equation estimating RBV (%). This enables the calculation of blood loss via information on serial haematocrits under a fixed N. Clinical validation is required before utilisation for emergency care of haemorrhagic shock.

10.
Int Urol Nephrol ; 54(10): 2733-2744, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35403974

RESUMO

PURPOSE: Although renal failure is a major healthcare burden globally and the cornerstone for preventing its irreversible progression is an early diagnosis, an adequate and noninvasive tool to screen renal impairment (RI) reliably and economically does not exist. We developed an interpretable deep learning model (DLM) using electrocardiography (ECG) and validated its performance. METHODS: This retrospective cohort study included two hospitals. We included 115,361 patients who had at least one ECG taken with an estimated glomerular filtration rate measurement within 30 min of the index ECG. A DLM was developed using 96,549 ECGs of 55,222 patients. The internal validation included 22,949 ECGs of 22,949 patients. Furthermore, we conducted an external validation with 37,190 ECGs of 37,190 patients from another hospital. The endpoint was to detect a moderate to severe RI (estimated glomerular filtration rate < 45 ml/min/1.73m2). RESULTS: The area under the receiver operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting RI during the internal and external validation was 0.858 (95% confidence interval 0.851-0.866) and 0.906 (0.900-0.912), respectively. In the initial evaluation of 25,536 individuals without RI patients whose DLM was defined as having a higher risk had a significantly higher chance of developing RI than those in the low-risk group (17.2% vs. 2.4%, p < 0.001). The sensitivity map indicated that the DLM focused on the QRS complex and T-wave for detecting RI. CONCLUSION: The DLM demonstrated high performance for RI detection and prediction using 12-, 6-, single-lead ECGs.


Assuntos
Inteligência Artificial , Insuficiência Renal , Diagnóstico Precoce , Eletrocardiografia , Humanos , Insuficiência Renal/diagnóstico , Estudos Retrospectivos
11.
Diagnostics (Basel) ; 12(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328207

RESUMO

BACKGROUND: We developed and validated an artificial intelligence (AI)-enabled smartwatch ECG to detect heart failure-reduced ejection fraction (HFrEF). METHODS: This was a cohort study involving two hospitals (A and B). We developed the AI in two steps. First, we developed an AI model (ECGT2T) to synthesize ten-lead ECG from the asynchronized 2-lead ECG (Lead I and II). ECGT2T is a deep learning model based on a generative adversarial network, which translates source ECGs to reference ECGs by learning styles of the reference ECGs. For this, we included adult patients aged ≥18 years from hospital A with at least one digitally stored 12-lead ECG. Second, we developed an AI model to detect HFrEF using a 10 s 12-lead ECG. The AI model was based on convolutional neural network. For this, we included adult patients who underwent ECG and echocardiography within 14 days. To validate the AI, we included adult patients from hospital B who underwent two-lead smartwatch ECG and echocardiography on the same day. The AI model generates a 10 s 12-lead ECG from a two-lead smartwatch ECG using ECGT2T and detects HFrEF using the generated 12-lead ECG. RESULTS: We included 137,673 patients with 458,745 ECGs and 38,643 patients with 88,900 ECGs from hospital A for developing the ECGT2T and HFrEF detection models, respectively. The area under the receiver operating characteristic curve of AI for detecting HFrEF using smartwatch ECG was 0.934 (95% confidence interval 0.913-0.955) with 755 patients from hospital B. The sensitivity, specificity, positive predictive value, and negative predictive value of AI were 0.897, 0.860, 0.258, and 0.994, respectively. CONCLUSIONS: An AI-enabled smartwatch 2-lead ECG could detect HFrEF with reasonable performance.

12.
Int J Cardiol ; 352: 72-77, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122911

RESUMO

BACKGROUND: Peripartum cardiomyopathy (PPCM) is a fatal maternal complication, with left ventricular systolic dysfunction (LVSD; Left ventricular ejection fraction 45% or less) occurring at the end of pregnancy or in the months following delivery. The scarcity of screening tools for PPCM leads to a delayed diagnosis and increases its mortality and morbidity. We aim to evaluate an electrocardiogram (ECG)-deep learning model (DLM) for detecting cardiomyopathy in the peripartum period. METHODS: For the DLM development and internal performance test for detecting LVSD, we obtained a dataset of 122,733 ECG-echocardiography pairs from 58,530 male and female patients from two community hospitals. For the DLM external validation, this study included 271 ECG-echocardiography pairs (157 unique pregnant and postpartum period women) examined in the Ajou University Medical Center (AUMC) between January 2007 and May 2020. All included cases underwent an ECG within two weeks before or after the day of transthoracic echocardiography, which was performed within a month before delivery, or within five months after delivery. Based on the diagnostic criteria of PPCM, we analyzed the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) to evaluate the model effectiveness. RESULTS: The ECG-based DLM detected PPCM with an AUROC of 0.877. Moreover, its sensitivity, specificity, PPV, and NPV for the detection of PPCM were 0.877, 0.833, 0.809, 0.352, and 0.975, respectively. CONCLUSIONS: An ECG-based DLM non-invasively and effectively detects cardiomyopathies occurring in the peripartum period and could be an ideal screening tool for PPCM.


Assuntos
Cardiomiopatias , Complicações Cardiovasculares na Gravidez , Inteligência Artificial , Cardiomiopatias/diagnóstico por imagem , Eletrocardiografia , Feminino , Humanos , Masculino , Período Periparto , Gravidez , Complicações Cardiovasculares na Gravidez/diagnóstico , Volume Sistólico , Função Ventricular Esquerda
13.
Eur Heart J Digit Health ; 3(2): 255-264, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36713007

RESUMO

Aims: Although overt hyperthyroidism adversely affects a patient's prognosis, thyroid function tests (TFTs) are not routinely conducted. Furthermore, vague symptoms of hyperthyroidism often lead to hyperthyroidism being overlooked. An electrocardiogram (ECG) is a commonly used screening test, and the association between thyroid function and ECG is well known. However, it is difficult for clinicians to detect hyperthyroidism through subtle ECG changes. For early detection of hyperthyroidism, we aimed to develop and validate an electrocardiographic biomarker based on a deep learning model (DLM) for detecting hyperthyroidism. Methods and results: This multicentre retrospective cohort study included patients who underwent ECG and TFTs within 24 h. For model development and internal validation, we obtained 174 331 ECGs from 113 194 patients. We extracted 48 648 ECGs from 33 478 patients from another hospital for external validation. Using 500 Hz raw ECG, we developed a DLM with 12-lead, 6-lead (limb leads, precordial leads), and single-lead (lead I) ECGs to detect overt hyperthyroidism. We calculated the model's performance on the internal and external validation sets using the area under the receiver operating characteristic curve (AUC). The AUC of the DLM using a 12-lead ECG was 0.926 (0.913-0.94) for internal validation and 0.883(0.855-0.911) for external validation. The AUC of DLMs using six and a single-lead were in the range of 0.889-0.906 for internal validation and 0.847-0.882 for external validation. Conclusion: We developed a DLM using ECG for non-invasive screening of overt hyperthyroidism. We expect this model to contribute to the early diagnosis of diseases and improve patient prognosis.

14.
Scand J Trauma Resusc Emerg Med ; 29(1): 145, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602084

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction and a major healthcare burden worldwide. Although sepsis is a medical emergency that requires immediate management, screening for the occurrence of sepsis is difficult. Herein, we propose a deep learning-based model (DLM) for screening sepsis using electrocardiography (ECG). METHODS: This retrospective cohort study included 46,017 patients who were admitted to two hospitals. A total of 1,548 and 639 patients had sepsis and septic shock, respectively. The DLM was developed using 73,727 ECGs from 18,142 patients, and internal validation was conducted using 7774 ECGs from 7,774 patients. Furthermore, we conducted an external validation with 20,101 ECGs from 20,101 patients from another hospital to verify the applicability of the DLM across centers. RESULTS: During the internal and external validations, the area under the receiver operating characteristic curve (AUC) of the DLM using 12-lead ECG was 0.901 (95% confidence interval, 0.882-0.920) and 0.863 (0.846-0.879), respectively, for screening sepsis and 0.906 (95% confidence interval (CI), 0.877-0.936) and 0.899 (95% CI, 0.872-0.925), respectively, for detecting septic shock. The AUC of the DLM for detecting sepsis using 6-lead and single-lead ECGs was 0.845-0.882. A sensitivity map revealed that the QRS complex and T waves were associated with sepsis. Subgroup analysis was conducted using ECGs from 4,609 patients who were admitted with an infectious disease, and the AUC of the DLM for predicting in-hospital mortality was 0.817 (0.793-0.840). There was a significant difference in the prediction score of DLM using ECG according to the presence of infection in the validation dataset (0.277 vs. 0.574, p < 0.001), including severe acute respiratory syndrome coronavirus 2 (0.260 vs. 0.725, p = 0.018). CONCLUSIONS: The DLM delivered reasonable performance for sepsis screening using 12-, 6-, and single-lead ECGs. The results suggest that sepsis can be screened using not only conventional ECG devices but also diverse life-type ECG machines employing the DLM, thereby preventing irreversible disease progression and mortality.


Assuntos
COVID-19 , Aprendizado Profundo , Sepse , Eletrocardiografia , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Sepse/diagnóstico
15.
J Electrocardiol ; 67: 124-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225095

RESUMO

BACKGROUND: Early detection and intervention is the cornerstone for appropriate treatment of arrhythmia and prevention of complications and mortality. Although diverse deep learning models have been developed to detect arrhythmia, they have been criticized due to their unexplainable nature. In this study, we developed an explainable deep learning model (XDM) to classify arrhythmia, and validated its performance using diverse external validation data. METHODS: In this retrospective study, the Sejong dataset comprising 86,802 electrocardiograms (ECGs) was used to develop and internally variate the XDM. The XDM based on a neural network-backed ensemble tree was developed with six feature modules that are able to explain the reasons for its decisions. The model was externally validated using data from 36,961 ECGs from four non-restricted datasets. RESULTS: During internal and external validation of the XDM, the average area under the receiver operating characteristic curves (AUCs) using a 12­lead ECG for arrhythmia classification were 0.976 and 0.966, respectively. The XDM outperformed a previous simple multi-classification deep learning model that used the same method. During internal and external validation, the AUCs of explainability were 0.925-0.991. CONCLUSION: Our XDM successfully classified arrhythmia using diverse formats of ECGs and could effectively describe the reason for the decisions. Therefore, an explainable deep learning methodology could improve accuracy compared to conventional deep learning methods, and that the transparency of XDM can be enhanced for its application in clinical practice.


Assuntos
Aprendizado Profundo , Algoritmos , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Humanos , Estudos Retrospectivos
16.
Resuscitation ; 163: 78-85, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33895236

RESUMO

BACKGROUND: The recently developed deep learning (DL)-based early warning score (DEWS) has shown potential in predicting deteriorating patients. We aimed to validate DEWS in multiple centres and compare the prediction, alarming and timeliness performance with the modified early warning score (MEWS) to identify patients at risk for in-hospital cardiac arrest (IHCA). METHOD/RESEARCH DESIGN: This retrospective cohort study included adult patients admitted to the general wards of five hospitals during a 12-month period. The occurrence of IHCA within 24 h of vital sign observation was the outcome of interest. We assessed the discrimination using the area under the receiver operating characteristic curve (AUROC). RESULTS: The study population consists of 173,368 patients (224 IHCAs). The predictive performance of DEWS was superior to that of MEWS in both the internal (AUROC: 0.860 vs. 0.754, respectively) and external (AUROC: 0.905 vs. 0.785, respectively) validation cohorts. At the same specificity, DEWS had a higher sensitivity than MEWS, and at the same sensitivity, DEWS reduced the mean alarm count by nearly half of MEWS. Additionally, DEWS was able to predict more IHCA patients in the 24-0.5 h before the outcome, and DEWS was reasonably calibrated. CONCLUSION: Our study showed that DEWS was superior to MEWS in three key aspects (IHCA predictive, alarming, and timeliness performance). This study demonstrates the potential of DEWS as an effective, efficient screening tool in rapid response systems (RRSs) to identify high-risk patients.

18.
Ann Noninvasive Electrocardiol ; 26(3): e12839, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33719135

RESUMO

INTRODUCTION: The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. METHODS AND RESULTS: This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. CONCLUSION: The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.


Assuntos
Inteligência Artificial , Eletrocardiografia/métodos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Desequilíbrio Hidroeletrolítico/diagnóstico
19.
ASAIO J ; 67(3): 314-321, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33627606

RESUMO

Although heart failure with reduced ejection fraction (HFrEF) is a common clinical syndrome and can be modified by the administration of appropriate medical therapy, there is no adequate tool available to perform reliable, economical, early-stage screening. To meet this need, we developed an interpretable artificial intelligence (AI) algorithm for HFrEF screening using electrocardiography (ECG) and validated its performance. This retrospective cohort study included two hospitals. An AI algorithm based on a convolutional neural network was developed using 39,371 ECG results from 17,127 patients. The internal validation included 3,470 ECGs from 2,908 patients. Furthermore, we conducted external validation using 4,362 ECGs from 4,176 patients from another hospital to verify the applicability of the algorithm across different centers. The end-point was to detect HFrEF, defined as an ejection fraction <40%. We also visualized the regions in 12 lead ECG that affected HFrEF detection in the AI algorithm and compared this to the previously documented literature. During the internal and external validation, the areas under the curves of the AI algorithm using a 12 lead ECG for detecting HFrEF were 0.913 (95% confidence interval, 0.902-0.925) and 0.961 (0.951-0.971), respectively, and the areas under the curves of the AI algorithm using a single-lead ECG were 0.874 (0.859-0.890) and 0.929 (0.911-0.946), respectively. The deep learning-based AI algorithm performed HFrEF detection well using not only a 12 lead but also a single-lead ECG. These results suggest that HFrEF can be screened not only using a 12 lead ECG, as is typical of a conventional ECG machine, but also with a single-lead ECG performed by a wearable device employing the AI algorithm, thereby preventing irreversible disease progression and mortality.


Assuntos
Aprendizado Profundo , Diagnóstico Precoce , Eletrocardiografia/métodos , Insuficiência Cardíaca/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos
20.
Pediatr Emerg Care ; 37(12): e988-e994, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268962

RESUMO

BACKGROUND AND OBJECTIVES: Emergency department (ED) overcrowding is a national crisis in which pediatric patients are often prioritized at lower levels. Because the prediction of prognosis for pediatric patients is important but difficult, we developed and validated a deep learning algorithm to predict the need for critical care in pediatric EDs. METHODS: We conducted a retrospective observation cohort study using data from the Korean National Emergency Department Information System, which collected data in real time from 151 EDs. The study subjects were pediatric patients who visited EDs from 2014 to 2016. The data were divided by date into derivation and test data. The primary end point was critical care, and the secondary endpoint was hospitalization. We used age, sex, chief complaint, symptom onset to arrival time, arrival mode, trauma, and vital signs as predicted variables. RESULTS: The study subjects consisted of 2,937,078 pediatric patients of which 18,253 were critical care and 375,078 were hospitalizations. For critical care, the area under the receiver operating characteristics curve of the deep learning algorithm was 0.908 (95% confidence interval, 0.903-0.910). This result significantly outperformed that of the pediatric early warning score (0.812 [0.803-0.819]), conventional triage and acuity system (0.782 [0.773-0.790]), random forest (0.881 [0.874-0.890]), and logistic regression (0.851 [0.844-0.858]). For hospitalization, the deep-learning algorithm (0.782 [0.780-0.783]) significantly outperformed the other methods. CONCLUSIONS: The deep learning algorithm predicted the critical care and hospitalization of pediatric ED patients more accurately than the conventional early warning score, triage tool, and machine learning methods.


Assuntos
Aprendizado Profundo , Algoritmos , Criança , Estudos de Coortes , Cuidados Críticos , Serviço Hospitalar de Emergência , Hospitalização , Humanos , Estudos Retrospectivos , Triagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA