Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257684

RESUMO

This paper provides a comprehensive overview of the security vulnerability known as rowhammer in Dynamic Random-Access Memory (DRAM). While DRAM offers many desirable advantages, including low latency, high density, and cost-effectiveness, rowhammer vulnerability, first identified in 2014, poses a significant threat to computing systems. Rowhammer attacks involve repetitive access to specific DRAM rows, which can cause bit flips in neighboring rows, potentially compromising system credentials, integrity, and availability. The paper discusses the various stages of rowhammer attacks, explores existing attack techniques, and examines defense strategies. It also emphasizes the importance of understanding DRAM organization and the associated security challenges.

2.
Micromachines (Basel) ; 13(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557523

RESUMO

Spin-transfer torque magnetic random-access memory (STT-MRAM) has several desirable features, such as non-volatility, high integration density, and near-zero leakage power. However, it is challenging to adopt STT-MRAM in a wide range of memory applications owing to the long write latency and a tradeoff between read stability and write ability. To mitigate these issues, an STT-MRAM bit cell can be designed with two transistors to support multiple ports, as well as the independent optimization of read stability and write ability. The multi-port STT-MRAM, however, is achieved at the expense of a higher area requirement due to an additional transistor per cell. In this work, we propose an area-efficient design of 1R/1W dual-port STT-MRAM that shares a bitline between two adjacent bit cells. We identify that the bitline sharing may cause simultaneous access conflicts, which can be effectively alleviated by using the bit-interleaving architecture with a long interleaving distance and the sufficient number of word lines per memory bank. We report various metrics of the proposed design based on the bit cell design using a 45 nm process. Compared to a standard single-port STT-MRAM, the proposed design shows a 15% lower read power and a 19% higher read-disturb margin. Compared with prior work on the 1R/1W dual-port STT-MRAM, the proposed design improves the area by 25%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA