Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; 20(2): e2304592, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688336

RESUMO

An approach for synthesizing AgInZnS/CdS/ZnS core-shell-shell quantum dots (QDs) that demonstrate exceptional stability and electroluminescence (EL) performance is introduced. This approach involves incorporating a cadmium sulfide (CdS) interlayer between an AgInZnS (AIZS) core and a zinc sulfide (ZnS) shell to prevent the diffusion of Zn ions into the AIZS core and the cation exchange at the core-shell interface. Consequently, a uniform and thick ZnS shell, with a thickness of 2.9 nm, is formed, which significantly enhances the stability and increases the photoluminescence quantum yield (87.5%) of the QDs. The potential for AIZS/CdS/ZnS QDs in electroluminescent devices is evaluated, and an external quantum efficiency of 9.6% in the 645 nm is achieved. These findings highlight the importance of uniform and thick ZnS shells in improving the stability and EL performance of QDs.

2.
Adv Sci (Weinh) ; 10(34): e2304767, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867211

RESUMO

In the development of new organic crystals for nonlinear optical and terahertz (THz) applications, it is very challenging to achieve the essentially required non-centrosymmetric molecular arrangement. Moreover, the resulting crystal structure is mostly unpredictable due to highly dipolar molecular components with complex functional substituents. In this work, new organic salt crystals with top-level macroscopic optical nonlinearity by controlling the van der Waals volume (VvdW ), rather than by trial and error, are logically designed. When the VvdW of molecular ionic components varies, the corresponding crystal symmetry shows an observable trend: change from centrosymmetric to non-centrosymmetric and back to centrosymmetric. All non-centrosymmetric crystals exhibit an isomorphic P1 crystal structure with an excellent macroscopic second-order nonlinear optical response. Apart from the top-level macroscopic optical nonlinearity, new organic crystals introducing highly electronegative fluorinated substituents with strong secondary bonding ability show excellent performance in efficient and broadband THz wave generation, high crystal density, high thermal stability, and good bulk crystal growth ability.

3.
Inorg Chem ; 61(36): 14361-14367, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36047720

RESUMO

We synthesized colloidal cesium metal halide CsMX (M = Fe, Co, Ni; X = Cl, Br) nanoparticles (NPs) and assessed their crystal stability by density functional theory (DFT) calculations. We successfully synthesized Cs3FeCl5, Cs3FeBr5, Cs3CoCl5, Cs3CoBr5, CsNiCl3, and CsNiBr3 NPs. CsMX NPs with Fe and Co exhibited Cs3M1X5 and Cs2M1X4 structures depending on the reaction conditions; however, CsNiX NPs exhibited only the CsNiX3 structure. The differences in structural stability by central metal ions were explained using spin-polarized DFT calculations. The analysis revealed tetragonal Cs3M1X5 and orthorhombic Cs2M1X4 structures to have similar thermodynamic stabilities in the case of Fe and Co, whereas the hexagonal CsMX3 structure in the case of Ni was the most stable. Moreover, the calculation results were the same as the experimental results. In particular, cobalt-related Cs3CoBr5 NPs easily developed into Cs2CoCl4 nanorods with an increase in temperature.

4.
Adv Sci (Weinh) ; 9(24): e2201391, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839468

RESUMO

Solid-state molecular phonons play a crucial role in the performance of diverse photonic and optoelectronic devices. In this work, new organic terahertz (THz) generators based on a catechol group that acts as a phonon suppressing intermolecular adhesive are developed. The catechol group is widely used in mussel-inspired mechanical adhesive chemistry. Newly designed organic electro-optic crystals consist of catechol-based nonlinear optical 4-(3,4-dihydroxystyryl)-1-methylpyridinium (DHP) cations and 4-(trifluoromethyl)benzenesulfonate anions (TFS), which both have multiple interionic interaction capability. Interestingly, compared to benchmark organic crystals for THz generators, DHP-TFS crystals concomitantly achieve top level values of the lowest void volume and the highest crystal density, resulting in an exceptionally small amplitude of solid-state molecular phonons. Simultaneously achieving small molecular phonon amplitude, large optical nonlinearity and good phase matching at infrared optical pump wavelengths, DHP-TFS crystals are capable of generating broadband THz waves of up to 16 THz with high optical-to-THz conversion efficiency; one order of magnitude higher than commercial inorganic THz generators.

5.
Adv Sci (Weinh) ; 7(20): 2001738, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101871

RESUMO

New organic THz generators are designed herein by molecular engineering of the refractive index, phonon mode, and spatial asymmetry. These benzothiazolium crystals simultaneously satisfy the crucial requirements for efficient THz wave generation, including having nonlinear optical chromophores with parallel alignment that provide large optical nonlinearity; good phase matching for enhancing the THz generation efficiency in the near-infrared region; strong intermolecular interactions that provide restraining THz self-absorption; high solubility that promotes good crystal growth ability; and a plate-like crystal morphology with excellent optical quality. Consequently, the as-grown benzothiazolium crystals exhibit excellent characteristics for THz wave generation, particularly at near-infrared pump wavelengths around 1100 nm, which is very promising given the availability of femtosecond laser sources at this wavelength, where current conventional THz generators deliver relatively low optical-to-THz conversion efficiencies. Compared to a 1.0-mm-thick ZnTe crystal as an inorganic benchmark, the 0.28-mm-thick benzothiazolium crystal yields a 19 times higher peak-to-peak THz electric field with a broader spectral bandwidth (>6.5 THz) when pumped at 1140 nm. The present work provides a valuable approach toward realizing organic crystals that can be pumped by near-infrared sources for efficient THz wave generation.

6.
Opt Express ; 28(17): 24444-24451, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32906985

RESUMO

We report a compact, simple source of terahertz radiation that can be tuned to well-defined frequencies spanning ∼1.4 to 10 THz, based on difference-frequency generation in an HMQ-TMS crystal. The pair of pump pulses required for this process is obtained by optical parametric generation in an aperiodically-poled lithium niobate crystal; the center wavelength of this pair of pulses is around 1.45 µm. We obtained 40 nJ THz pulses using 38 µJ, 0.85 ns pump pulses.

7.
Bioconjug Chem ; 31(11): 2522-2532, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32985867

RESUMO

By taking advantage of a unique mechanism of aggregation-induced emission (AIE) phenomena, AIE luminogens (AIEgens) have been provided as a solution to overcome the limitations of conventional fluorophores bearing the feature of aggregation-caused quenching (ACQ) phenomena. Especially, AIEgens paved the way to develop fluorogenic probes ideal for fluorescent imaging in live cell conditions. Despite the high demand for discovery of new AIEgens, it is still challenging to find a versatile molecular platform to generate diverse AIEgens. Herein, we report a new colorful molecular framework, Kaleidolizine (KIz), as a molecular platform for AIEgen generation. The KIz system allows systematic tuning of the emission wavelength from 455 to 564 nm via perturbation of the electron density of substituents on the indolizine core. Increasing the water fraction of the KIz solution in the THF/water mixture induces the fluorescence intensity increase up to 120-fold. Crystal structure analysis, computational calculations, and solvatochromism studies suggest that a synergistic effect between the intramolecular charge transfer and restriction of intramolecular rotation acts as the AIE mechanism in the KIz system. Conjugation of the triphenylphosphonium moiety to KIz allows successful development of triphenylphosphonium (TPP)-KIz for real-time bioimaging of innate mitochondria in live cells, thereby revealing the potential of KIz as a versatile molecular platform to generate fluorogenic probes based on AIE phenomena. We do believe the KIz system could serve as a new, reliable, and generally applicable molecular platform to develop various AIEgens having desired photophysical properties along with an excellent signal-to-noise ratio and with experimental convenience especially for fluorogenic live cell imaging.


Assuntos
Cor , Corantes Fluorescentes/química , Indolizinas/química , Imagem Óptica/métodos , Relação Estrutura-Atividade
8.
Opt Express ; 28(7): 9631-9641, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225566

RESUMO

We demonstrate the first megahertz (MHz) repetition-rate, broadband terahertz (THz) source based on optical rectification in the organic crystal HMQ-TMS driven by a femtosecond Yb:fibre laser. Pumping at 1035 nm with 30 fs pulses, we achieve few-cycle THz emission with a smooth multi-octave spectrum that extends up to 6 THz at -30 dB, with conversion efficiencies reaching 10-4 and an average output power of up to 0.38 mW. We assess the thermal damage limit of the crystal and conclude a maximum fluence of ∼1.8 mJ·cm-2 at 10 MHz with a 1/e2 pump beam diameter of 0.10 mm. We compare the performance of HMQ-TMS with the prototypical inorganic crystal gallium phosphide (GaP), yielding a tenfold electric field increase with a peak on-axis field strength of 7 kV·cm-1 and almost double the THz bandwidth. Our results further demonstrate the suitability of organic crystals in combination with fibre lasers for repetition-rate scaling of broadband, high-power THz sources for time-domain spectroscopic applications.

9.
Nanoscale Adv ; 2(12): 5615-5622, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133859

RESUMO

For QDs used in displays, a narrow emission linewidth and emission peak tuning depending on the morphology of the QDs are the most important factors in order to maximize the range of colors to be represented. CdSe-based QDs are known as the most suitable QDs for displays, but cadmium is a highly toxic and regulated substance for use worldwide; InP-based QDs are the most noteworthy alternative. However, InP-based QDs have a wider linewidth of emission light in the entire visible region compared to CdSe-based QDs. In this work, we use the ZnSe inner shell as a lattice buffer layer between the InGaP core and the ZnS outer shell in the type-I structure, using a heating-up method in which ZnSe precursors were added to a low-temperature core solution and then rapidly raised to a temperature of 270-320 °C. Interestingly, when reacting at high temperatures, the shape of the QDs changes to a tetrahedron, and the FWHM becomes narrower than at low temperature. To understand this phenomenon, we proceeded with transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) analyses, and a reasonable explanation was provided with DFT calculations.

10.
Opt Lett ; 44(19): 4881-4884, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568466

RESUMO

A laser supercontinuum is generated by cross-phase modulation (XPM) driven by an intense terahertz (THz) field in organic crystal OHQ-N2S. In this highly nonlinear medium, the THz electric field induces a time-varying optical phase modulation, which causes a spectacular spectral broadening and shifting of a co-propagating near-infrared laser pulse. The effect is enabled by the large electro-optic coefficient, the low absorption, and the good velocity matching between the laser and the THz pulse over the OHQ-N2S crystal thickness. The XPM occurs when the THz field is aligned along the polar axis of the OHQ-N2S. The results display a promising pathway for ultrafast control of the spectral and temporal properties of laser pulses using THz stimuli.

11.
ACS Appl Mater Interfaces ; 11(39): 35904-35913, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31545029

RESUMO

The formation of stabilized radical anions on organic materials in the solid state is an important issue in radical-based fundamental research and various applications. Herein, for the first time, we report on gas-induced ion-free stable radical anion formation (SRAF) of organic semiconducting solids with high gas selectivities through the use of organic field-effect transistor (OFET) gas sensors and electron spin resonance spectroscopy. In contrast to the previously reported SRAF, which requires either anionic analytes in solution and/or cationic substituents on π-electron-deficient aromatic cores, NDI-EWGs consist of an n-type semiconducting naphthalene diimide (NDI) and various electron-withdrawing groups (EWGs) that exhibit non-ion-involved, gas-selective SRAF in the solid state. In the presence of hard Lewis base gases, NDI-EWG-based OFETs exhibit enhanced conductivity (Current-ON mode) through the formation of an SRAF NDI/gas complex, while in the presence of borderline and soft Lewis base gases, NDI-EWG-based OFETs show decreased conductivity (Current-OFF mode) by the formation of a resistive NDI/gas complex. Organic semiconducting solids with EWGs exhibiting highly gas-selective solid-SRAF constitute a very promising platform for radical-based chemistry and can be used in various applications, such as highly gas-selective probes.

12.
ChemSusChem ; 12(1): 224-230, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30375174

RESUMO

A design strategy is proposed for electron-transporting materials (ETMs) with homochiral asymmetric-shaped groups for highly efficient non-fullerene perovskite solar cells (PSCs). The electron transporting N,N'-bis[(R)-1-phenylethyl]naphthalene-1,4,5,8-tetracarboxylic diimide (NDI-PhE) consists of two asymmetric-shaped chiral (R)-1-phenylethyl (PhE) groups that act as solubilizing groups by reducing molecular symmetry and increasing the free volume. NDI-PhE exhibits excellent film-forming ability with high solubility in various organic solvents [about two times higher solubility than the widely used fullerene-based phenyl-C61 -butyric acid methyl ester (PCBM) in o-dichlorobenzene]. NDI-PhE ETM-based inverted PSCs exhibit very high power conversion efficiencies (PCE) of up to 20.5 % with an average PCE of 18.74±0.95 %, which are higher than those of PCBM ETM-based PSCs. The high PCE of NDI-PhE ETM-based PSCs may be attributed to good film-forming abilities and to three-dimensional isotropic electron transporting capabilities. Therefore, introducing homochiral asymmetric-shaped groups onto charge-transporting materials is a good strategy for achieving high device performance.

13.
ChemSusChem ; 11(22): 3882-3892, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30259690

RESUMO

Organic electron-transporting materials (ETMs) with low-temperature solution processability and high electron-transfer/transport characteristics have received significant attention for their use in high-performance perovskite solar cells (PSCs). In contrast to widely investigated fullerene-based organic ETMs for PSCs, only a few types of non-fullerene-based ETMs have been developed. In this Concept article, a representative design concept for non-fullerene ETMs is described for use in normal (n-i-p) and inverted (p-i-n) type PSCs. On the basis of a discussion on ETM requirements for PSCs, recently developed non-fullerene polymeric and small-molecule-based ETMs for PSCs are highlighted, alongside various other approaches for enhancing PSC device performance, such as using additional dopants and introducing amine terminal groups in the ETMs and ETM-based interlayers. This Concept provides a basic design concept for non-fullerene-based ETMs in PSCs.

14.
Chem Commun (Camb) ; 54(56): 7842-7845, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29947377

RESUMO

Three-stage pH-switchable organic second-order nonlinear optical (SO NLO) chromophores are synthesized and characterized by wavelength-dependent linear and nonlinear spectroscopy. The chromophores exhibit huge SO NLO responses in their "on" stages, and large switching contrasts between adjacent stages in both SO NLO response and fluorescence quantum yield, with moreover different "on/off" sequences for closely related compounds.

15.
Chemistry ; 24(52): 13706-13718, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29700889

RESUMO

Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π-conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing fluorescence (FL) intensity. In this minireview, we describe recently developed FMRs including push-pull type π-conjugated chromophores, meso-phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives, and porphyrin derivatives whose FL mechanism is viscosity-responsive. In addition, FMR design strategies for addressing various issues (e.g., obtaining high FL contrast, internal FL references, and FL intensity-contrast trade-off) and their biological and microfluidic applications are also discussed.

16.
ACS Appl Mater Interfaces ; 10(14): 11826-11836, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29560713

RESUMO

This study investigates the performance of single-crystalline nanomaterials of wide-band gap naphthalene diimide (NDI) derivatives with methylene-bridged aromatic side chains. Such materials are found to be easily used as high-performance, visible-blind near-UV light detectors. NDI single-crystalline nanoribbons are assembled using a simple solution-based process (without solvent-inclusion problems), which is then applied to organic phototransistors (OPTs). Such OPTs exhibit excellent n-channel transistor characteristics, including an average electron mobility of 1.7 cm2 V-1 s-1, sensitive UV detection properties with a detection limit of ∼1 µW cm-2, millisecond-level responses, and detectivity as high as 1015 Jones, demonstrating the highly sensitive organic visible-blind UV detectors. The high performance of our OPTs originates from the large face-to-face π-π stacking area between the NDI semiconducting cores, which is facilitated by methylene-bridged aromatic side chains. Interestingly, NDI-based nanoribbon OPTs exhibit a distinct visible-blind near-UV detection with an identical detection limit, even under intense visible light illumination (for example, 104 times higher intensity than UV light intensity). Our findings demonstrate that wide-band gap NDI-based nanomaterials are highly promising for developing high-performance visible-blind UV photodetectors. Such photodetectors could potentially be used for various applications including environmental and health-monitoring systems.

17.
Nanotechnology ; 29(19): 195403, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29424700

RESUMO

The fabrication of ß-CoV3O8 nanorods embedded in graphene sheets and their application as electrochemical charge storage electrodes is reported. From the surfactant treatment of raw graphite, graphene was directly prepared and its nanocomposite with ß-CoV3O8 nanorods distributed between graphene layers (ß-CoV3O8-G) was synthesized by a hydrothermal method. When applied as an anode in lithium-ion batteries, the ß-CoV3O8-G anode exhibits greatly improved charge and discharge capacities of 790 and 627 mAh · g-1, respectively, with unexpectedly high initial efficiency of 82%. The observed discharge capacity reflected that at least 3.7 mol of Li+ is selectively accumulated within the ß-CoV3O8 phase (LixCoV3O8, x > 3.7), indicative of significantly improved Li+ uptake when compared with aggregated ß-CoV3O8 nanorods. Moreover, very distinct peak plateaus and greatly advanced cycling performance are observed, showing more improved Li+ storage within the ß-CoV3O8 phase. As a supercapacitor electrode, moreover, our composite electrode exhibits very high peak pseudocapacitances of 2.71 F · cm-2 and 433.65 F · g-1 in the ß-CoV3O8 phase with extremely stable cycling performance. This remarkably enhanced performance in the individual electrochemical charge storage electrodes is attributed to the novel phase formation of ß-CoV3O8 and its optimized nanocomposite structure with graphene, which yield fast electrical conduction through graphene, easy accessibility of ions through the open multilayer nanosheet structure, and a relaxation space between the ß-CoV3O8-G.

18.
Opt Express ; 26(3): 2509-2516, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401789

RESUMO

We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

19.
Chemistry ; 24(12): 2888-2897, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28987004

RESUMO

A series of fluorescent molecular rotors obtained by introducing two rotational groups ("rotators"), which exhibit different rotational and electron-donating abilities, are discussed. Whereas the control molecular rotor, PH, includes a single rotator (the widely used phenyl group), the PO molecular rotors consist of two rotators (a phenyl group and an alkoxy group), which exhibit simultaneous strongly electron-donating and easy rotational abilities. Compared with the control rotor PH, PO molecular rotors exhibited one order of magnitude higher quantum yield (fluorescence intensity) and simultaneously exhibited significantly higher fluorescence contrast. These properties are directly related to the strong electron-donating ability and low energy barrier of rotation of the alkoxy group, as confirmed by dynamic fluorescence experiments and quantum chemical calculations. The PO molecular rotors exhibited two fluorescence relaxation pathways, whereas the PH molecular rotor exhibited a single fluorescence relaxation pathway. Cellular fluorescence imaging with PO molecular rotors for mapping cellular viscosity was successfully demonstrated.

20.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28589627

RESUMO

Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA