Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167004, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182070

RESUMO

Steroid sulfatase (STS) deficiency is responsible for X-linked ichthyosis (XLI), a genetic disorder characterized by rough and dry skin caused by excessive keratinization. The impaired keratinization process leads to reduced cell mobility and increased apoptosis, which can cause an excessive buildup of the stratum corneum. In this study, we investigated the mechanisms underlying XLI and found that STS deficiency reduces cell mobility and increases apoptosis in human keratinocyte HaCaT cells. To explore these mechanisms further, RNA-sequencing was conducted on skin tissues from STS transgenic and knockout mice. Our RNA-seq results revealed that STS deficiency plays a critical role in regulating multiple signaling pathways associated with cell mobility and apoptosis, such as Wnt/ß signaling and the Hippo signaling pathway. Knockdown of the STS gene using shRNA in HaCaT cells led to an upregulation of E-cadherin expression and suppression of key factors involved in epithelial-mesenchymal transition (EMT), such as N-cadherin and vimentin. Inhibition of EMT involved the Hippo signaling pathway and reduction of HIF-1α. Interestingly, inhibiting STS with shRNA increased mitochondrial respiration levels, as demonstrated by the extracellular flux oxygen consumption rate. Additionally, we observed a significant increase in ROS production in partial STS knockout cells compared to control cells. Our study demonstrated that the excessive generation of ROS caused by STS deficiency induces the expression of Bax and Bak, leading to the release of cytochrome c and subsequent cell death. Consequently, STS deficiency impairs cell mobility and promotes apoptosis, offering insights into the pathophysiological processes and potential therapeutic targets for XLI.


Assuntos
Ictiose Ligada ao Cromossomo X , Ictiose , Animais , Camundongos , Humanos , Ictiose Ligada ao Cromossomo X/genética , Esteril-Sulfatase/genética , Espécies Reativas de Oxigênio , Ictiose/genética , Apoptose , RNA Interferente Pequeno
2.
Toxicol Res ; 39(4): 711-719, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37779582

RESUMO

The Hippo pathway is a signaling pathway that controls organ size in animals by regulating cell proliferation and apoptosis. Yes-associated protein 1 (YAP1), an oncogene associated with the development and progression of breast cancer, is downregulated by the Hippo pathway and is associated with the development and progression of breast cancer. Yippee-like 3 (YPEL3) is a target gene of the tumor suppressor protein p53, and its activation has been shown to inhibit cell growth, induce cellular senescence, and suppress tumor cell metastasis. In this study, we found that YAP1 inhibits the expression of YPEL3 expression in breast cancer cells. Furthermore, a decrease in lamin B1, a marker protein of cellular senescence, coupled with the activation of senescence-associated ß-galactosidase indicated that upregulating YPEL3 levels through YAP1 downregulation can induce cellular senescence. Additionally, elevated YPEL3 levels resulted in higher levels of oxygen consumption rate in mitochondria, thus promoting apoptosis. This suggests that YPEL3 plays a crucial role in regulating oxidative stress and cell apoptosis in breast cancer cells. Therefore, the interaction between YAP1 and YPEL3 represents a novel mechanism of cellular senescence mediated by the Hippo signaling pathway. Collectively, our findings suggest that the Hippo signaling pathway plays an important role in regulating cellular senescence, which could have implications for the development of new therapeutic strategies for diseases such as cancer.

3.
Toxicol Res ; 38(4): 591-600, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277372

RESUMO

2,4,3',5'-Tetramethoxystilbene (TMS) is a selective inhibitor of cytochrome P450 1B1 to block the conversion from estradiol to 4-OH-estradiol. Several studies suggested that TMS may act as a potent anti-cancer agent for hormone-related cancer including cervical cancer. Nutlin-3a is a cis-imidazoline analog that interferes with the interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The purpose of the study was to compare the cytotoxic effect of TMS and nutlin-3a treatment individually and in combination in HeLa cells. To assess the potential synergistic effects between TMS and nutlin-3a, low concentrations of TMS and nutlin-3a were simultaneously treated in HeLa cells. Based on cell viability, apoptosis assays, and the increase in cleaved caspase-3 and poly (ADP-ribose) polymerase cleavage, it was demonstrated that the combination with TMS and nutlin-3a exerts a synergistic effect on cancer cell death. Isobologram analysis of HeLa cells noted synergism between TMS and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bax and Bak, and decreased the expression of the XIAP. In addition, combination treatment significantly enhanced the translocation of AIF to the nucleus in HeLa cells. In conclusion, the results demonstrate that the combination of TMS and nutlin-3a induces synergistic apoptosis in HeLa cells, suggesting the possibility that this combination can be applied as a novel therapeutic strategy for cervical cancer.

4.
Sci Rep ; 11(1): 20867, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675221

RESUMO

Human steroid sulfatase (STS) is an enzyme that catalyzes the hydrolysis of dehydroepiandrosterone sulfate (DHEAS), estrone sulfate (E1S), and cholesterol sulfate. Abnormal expression of STS causes several diseases including colorectal, breast, and prostate cancer and refractory skin disease. In particular, accumulation of intracellular cholesterol sulfate by STS deficiency leads to a skin disorder with abnormal keratinization called X-linked ichthyosis (XLI). To determine the detailed mechanisms of XLI, we performed RNA sequencing (RNA-seq) analysis using human keratinocyte HaCaT cells treated with cholesterol and cholesterol sulfate. Of the genes with expression changes greater than 1.5-fold, Yippee-like 3 (YPEL3), a factor expected to affect cell differentiation, was found. Induction of YPEL3 causes permanent growth arrest, cellular senescence, and inhibition of metastasis in normal and tumor cells. In this study, we demonstrate that YPEL3 expression was induced by STS deficiency and, using the CRISPR/Cas9 system, a partial knock-out (STS+/-) cell line was constructed to establish a disease model for XLI studies. Furthermore, we show that increased expression of YPEL3 in STS-deficient cell lines promoted cellular senescence and expression of keratinization-related proteins such as involucrin and loricrin. Our results suggest that upregulation of YPEL3 expression by STS deficiency may play a crucial role in inducing cellular senescence and abnormal differentiation in human keratinocytes.


Assuntos
Ictiose Ligada ao Cromossomo X/genética , Queratinócitos/patologia , Esteril-Sulfatase/genética , Proteínas Supressoras de Tumor/genética , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Senescência Celular , Humanos , Ictiose Ligada ao Cromossomo X/patologia , Queratinócitos/metabolismo , Regulação para Cima
5.
J Toxicol Environ Health A ; 84(2): 84-94, 2021 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-33103613

RESUMO

Auranofin is a gold complex used as an anti-rheumatic agent and may act as a potent anticancer drug against breast tumors. Trametinib is a specific mitogen-activated protein kinase inhibitor, approved for the treatment of metastatic melanoma. The aim of this study was to examine the synergistic effects of auranofin and trametinib on apoptosis in MCF-7 human breast cancer cells. The combination treatment inhibited cancer cell proliferation and induced cell cycle arrest at the sub-G1 phase and apoptosis via poly (ADP-ribose) polymerase cleavage and caspase-3/7 activation. It is noteworthy that this treatment significantly increased p38 mitogen-activated protein kinase (MAPK) phosphorylation to induce mitochondrial stress, subsequently promoting cancer cell apoptosis through release of apoptosis-inducing factor. Further data demonstrated that combined treatment significantly induced increase in nuclear translocation of AIF. These results indicated that activation of the p38 MAPK signaling pathway and mitochondrial apoptosis may contribute to the synergistic consequences in MCF-7 cells. Collectively, our data demonstrated that combined treatment with auranofin and trametinib exhibited synergistic breast cancer cell death and this combination might be utilized as a novel therapeutic strategy for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Auranofina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Piridonas/farmacologia , Pirimidinonas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Biomol Ther (Seoul) ; 28(5): 473-481, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32536618

RESUMO

Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDAMB- 231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

7.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118553, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31493422

RESUMO

Cytochrome P450 1B1 (CYP1B1) is a key enzyme that catalyzes the metabolism of 17ß-estradiol (E2) into catechol estrogens, such as 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2). CYP1B1 is related to tumor formation and is over-expressed in a variety of cancer cells. In particular, CYP1B1 is highly expressed in hormone-related cancers such as breast cancer, ovarian cancer, or prostate cancer compared to other cancers. However, the detailed mechanisms involving this protein remain unclear. In this study, we demonstrate that CYP1B1 affects X-linked inhibitor of apoptosis protein (XIAP) expression. When CYP1B1 was over-expressed in cells, there was significant increase in the XIAP protein level, whereas the XIAP mRNA level was not affected by CYP1B1 expression. Treatment with 4-OHE2, mainly formed by CYP1B1 activity, also increased XIAP protein levels, whereas treatment with 2-OHE2 did not have a significant effect. Treatment with 4-OHE2 significantly prevented proteasome-mediated XIAP degradation. In addition, phosphorylation of XIAP on serine 87, which is known to stabilize XIAP, was up-regulated by 4-OHE2, indicating that 4-OHE2 affects XIAP stability through XIAP phosphorylation. We also found that phosphorylation of protein kinase C (PKC)ε, which is required for XIAP phosphorylation, increased when cells were treated with 4-OHE2. In summary, our data show that CYP1B1 may play an important role in preventing ubiquitin-proteasome-mediated XIAP degradation through the activation of PKCε signaling in cancer cells.


Assuntos
Citocromo P-450 CYP1B1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Células MCF-7 , Fosforilação
8.
Biomol Ther (Seoul) ; 27(6): 591-602, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31272137

RESUMO

Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrinregulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ß-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

9.
J Toxicol Environ Health A ; 82(10): 626-637, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258040

RESUMO

Auranofin is a gold complex categorized as an anti-rheumatic agent. Recently, several investigators suggested that auranofin may act as a potent anti-cancer drug for breast tumors. Nutlin-3a is a cis-imidazoline analog which prevents interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The aim of this study was to examine cell growth inhibition mediated by auranofin or nutlin-3a individually as well as in combination with MCF-7 and MDA-MB-231 cells. To assess any potential synergistic effects between auranofin and nutlin-3a, low concentrations of auranofin and nutlin-3a were simultaneously incubated with MCF-7 and MDA-MB-231 cells. Cell viability assay, caspase-3/7 assay, and poly (ADP-ribose) polymerase cleavage revealed that auranofin and nutlin-3a exerted a synergistic effect on cancer cell apoptosis. Isobologram analysis of MCF-7 and MDA-MB-231 cells noted evident synergism between auranofin and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bcl-2 associated X protein and Bcl-2 homologous antagonist/killer. Further, combination treatment significantly enhanced reactive oxygen species (ROS) generation in MCF-7 and MDA-MB-231 cells. In conclusion, data demonstrated that combined treatment with auranofin and nutlin-3a exhibited a synergistic action on breast cancer cells and this combination may be considered for use as a novel therapeutic strategy for breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Auranofina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Citotoxinas/uso terapêutico , Imidazóis/uso terapêutico , Piperazinas/uso terapêutico , Células Tumorais Cultivadas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Modelos Animais
10.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2464-2474, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31195119

RESUMO

Human steroid sulfatase (STS) has been linked with poor prognosis in steroid-associated tumors and represents an important clinical target in cancers, yet the mechanism of STS-induced carcinogenesis remains unclear. To correlate STS with cancer metabolism, we determined the effects of STS on aerobic glycolysis. STS overexpression increased cellular levels of lactic acid, the final product of aerobic glycolysis. Moreover, STS suppressed the oxygen consumption rate (OCR), which represents mitochondrial respiration. Inhibition of STS by the specific inhibitor STX064 recovered STS-induced OCR repression and lactic acid over-production. DHEA, but not DHEA-S, suppressed the OCR level and enhanced lactic acid production. To understand the molecular mechanism of STS-induced cancer metabolism, we measured the expression of glycolytic enzymes hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2), which was highly upregulated by STS and DHEA at both protein and mRNA levels. HIF1α is a key mediator of aerobic glycolysis, and STS enhanced HIF1α promoter activity, mRNA expression, and protein expression. Down-regulation of HIF1α by siRNA suppressed the HK2 and PKM2 expression induced by both STS and DHEA. HIF1α siRNA also recovered the OCR repression and lactic acid over-production induced by both STS and DHEA. To explore the mechanism in vivo, we produced transgenic mice overexpressing STS and found that STS expression was particularly enhanced in the lung. Consistent with our in vitro results, the expression of HIF1α, HK2, and PKM2 was also increased in mouse lung tissues. In conclusion, we suggest that STS may induce aerobic glycolysis through enhancing HIF1α expression.


Assuntos
Proteínas de Transporte/metabolismo , Glicólise , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Esteril-Sulfatase/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Proteínas de Transporte/genética , Desidroepiandrosterona/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Glicólise/efeitos dos fármacos , Células HeLa , Hexoquinase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Pulmão/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Consumo de Oxigênio/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Esteril-Sulfatase/antagonistas & inibidores , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA