Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chemistry ; : e202400629, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594211

RESUMO

Herein, we synthesized two donor-acceptor (D-A) type small organic molecules with self-assembly properties, namely MPA-BT-BA and MPA-2FBT-BA, both containing a low acidity anchoring group, benzoic acid. After systematically investigation, it is found that, with the fluorination, the MPA-2FBT-BA demonstrates a lower highest occupied molecular orbital (HOMO) energy level, higher hole mobility, higher hydrophobicity and stronger interaction with the perovskite layer than that of MPA-BT-BA. As a result, the device based-on MPA-2FBT-BA displays a better crystallization and morphology of perovskite layer with larger grain size and less non-radiative recombination. Consequently, the device using MPA-2FBT-BA as hole transport material achieved the power conversion efficiency (PCE) of 20.32 % and remarkable stability. After being kept in an N2 glove box for 116 days, the unsealed PSCs' device retained 93 % of its initial PCE. Even exposed to air with a relative humidity range of 30±5 % for 43 days, its PCE remained above 91 % of its initial condition. This study highlights the vital importance of the fluorination strategy combined with a low acidity anchoring group in SAMs, offering a pathway to achieve efficient and stable PSCs.

2.
Small Methods ; : e2301387, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470210

RESUMO

The application of carbon nanotube (CNT) yarns as thermoelectric materials for harvesting energy from low-grade waste heat including that generated by the human body, is attracting considerable attention. However, the lack of efficient n-type CNT yarns hinders their practical implementation in thermoelectric devices. This study reports efficient n-doping of CNT yarns, employing 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzimidazole-2-yl) phenyl) dimethylamine (N-DMBI) in alternative to conventional n-dopants, with o-dichlorobenzene emerging as the optimal solvent. The small molecular size of N-DMBI enables highly efficient doping within a remarkably short duration (10 s) while ensuring prolonged stability in air and at high temperature (150 °C). Furthermore, Joule annealing of the yarns significantly improves the n-doping efficiency. Consequently, thermoelectric power factors (PFs) of 2800, 2390, and 1534 µW m-1  K-2 are achieved at 200, 150, and 30 °C, respectively. The intercalation of N-DMBI molecules significantly suppresses the thermal conductivity, resulting in the high figure of merit (ZT) of 1.69×10-2 at 100 °C. Additionally, a π-type thermoelectric module is successfully demonstrated incorporating both p- and n-doped CNT yarns. This study offers an efficient doping strategy for achieving CNT yarns with high thermoelectric performance, contributing to the realization of lightweight and mechanically flexible CNT-based thermoelectric devices.

3.
Small ; : e2307840, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054757

RESUMO

All inorganic perovskite based on CsPbI2 Br has attracted significant attention due to its relatively thermal stable structure compare to its hybrid counterparts. With a wide bandgap of 1.9 eV and excellent light absorption capability, it has been extensively explored for applications in indoor photovoltaics and as a front absorber in tandem devices. However, the uncontrollable crystallization process during solvent evaporation and thermal annealing leads to both macroscopic defects like cracks and microscopic defects such as voids. In this study, a metastable adduct with lead (II) halides by incorporating 4-tert-butyl pyridine as a volatile Lewis base monodentate ligand in the precursor solution is formed. The strategic preferential decomposition of the adduct during the early-stage low-temperature annealing facilitated the desorption of lead (II) halides, inducing antisolvent-free heterogenous nucleation. This, in turn, promoted crystal growth during subsequent high-temperature annealing, resulting in dense films with low defect density. As a result, a maximum open-circuit voltage of 1.30 V is achieved with the champion power conversion efficiency of 16.5% in CsPbI2 Br-based perovskite solar cell. The work reveals a new mechanism of using Lewis acid-base adduct to obtain high quality perovskite films other than hindering crystallization in traditional way.

4.
ACS Appl Mater Interfaces ; 15(38): 45177-45189, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37699120

RESUMO

In this study, we investigated the impact of benzophenone (BP), a small molecule additive, on the performance and stability of inverted perovskite solar cells (PSCs). Specifically, we introduced BP into the perovskite precursor solution of FAPbI3 to fabricate PSCs with an ITO/PEDOT:PSS/BP:FAPbI3/PCBM/C60/PCB/Ag architecture. The incorporation of BP with an optimum concentration of 2 mg mL-1 significantly enhanced the power conversion efficiency (PCE) of the inverted PSC from 13.12 to 18.84% with negligible hysteresis. Notably, the BP-based PSCs retained ∼90% of their initial PCE after being stored in ambient air with 30% relative humidity at 25 °C for 700 h. In contrast, control devices showed rapid degradation, retaining only 30% of their initial value within 300 h under the same conditions. We attributed the superior performance and stability of the BP-based PSCs to the grain boundary passivation of the perovskite film. The improvement was mainly attributed to the intermolecular interaction between the O-donor Lewis base BP material and both Pb2+ and FA+ in FAPbI3. This effectively suppresses trap-assisted recombination and promotes the conversion of the δ-phase to photoactive and stable α-phase FAPbI3. Overall, our findings suggest that BP is a promising additive for improving the performance and stability of inverted PSCs.

5.
Nat Commun ; 14(1): 3571, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37322001

RESUMO

To restrain the chemical reaction at cathode interface of organic solar cells, two cathode interfacial materials are synthesized by connecting phenanthroline with carbolong unit. Consequently, the D18:L8-BO based organic solar cell with double-phenanthroline-carbolong achieve the highest efficiency of 18.2%. Double-phenanthroline-carbolong with larger steric hindrance and stronger electron-withdrawing property confirms to suppress the interfacial reaction with norfullerene acceptor, resulting the most stable device. Double-phenanthroline-carbolong based device can sustain 80% of its initial efficiency for 2170 h in dark N2 atmosphere, 96 h under 85 oC and keep 68% initial efficiency after been illuminated for 2200 h, which are significantly better than bathocuproin based devices. Moreover, superb interfacial stability of double-phenanthroline-carbolong cathode interface enables thermal posttreatment of organic sub-cell in perovskite/organic tandem solar cells and obtained a remarkable efficiency of 21.7% with excellent thermal stability, which indicates the potentially wide application of phenanthroline-carbolong materials for stable and efficient solar device fabrications.


Assuntos
Atmosfera , Fenantrolinas , Eletrodos , Elétrons
6.
Adv Sci (Weinh) ; 9(28): e2200445, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35876031

RESUMO

Organic solar cells (OSCs) based on polymer donor and non-fullerene acceptor achieve power conversion efficiency (PCE) more than 19% but their poor absorption below 550 nm restricts the harvesting of high-energy photons. In contrast, wide bandgap all-inorganic perovskites limit the absorption of low-energy photons and cause serious below bandgap loss. Therefore, a 2-terminal (2T) monolithic perovskite/organic tandem solar cell (TSC) incorporating wide bandgap CsPbI2 Br is demonstrated as front cell absorber and organic PM6:Y6 blend as rear cell absorber, to extend the absorption of OSCs into high-energy photon region. The perovskite sub-cell, featuring a sol-gel prepared ZnO/SnO2 bilayer electron transporting layer, renders a high open-circuit voltage (VOC ). The VOC is further enhanced by employing thermal annealing (TA)-free process in the fabrication of rear sub-cell, demonstrating a record high VOC of 2.116 V. The TA-free Ag/PFN-Br interface in organic sub-cell facilitates charge transport and restrains nonradiative recombination. Consequently, a remarkable PCE of 20.6% is achieved in monolithic 2T-TSCs configuration, which is higher than that of both reported single junction and tandem OSCs, demonstrating that tandem with wide bandgap all-inorganic perovskite is a promising strategy to improve the efficiency of OSCs.

7.
ACS Appl Mater Interfaces ; 14(21): 24374-24385, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580336

RESUMO

Fine-tuning the alkyl chains and end groups of non-fused ring electron acceptors (NFREAs) plays vital roles in the promotion of charge transfer (CT) and power conversion efficiency (PCE). In this work, we developed a series of A-D-A'-D-A-type NFREAs, which possess the same terminals (A), the cyclopentadithiophene unit (D), and the thieno[3,4-c]pyrrole-4,6-dione (A'). Despite the subtle difference in side chains and halogenated end groups, the six acceptors exhibit a considerable difference in the efficiency and device stability of the organic solar cells (OSCs). Among the molecules, chlorinated NFREAs show a broader light absorption than the fluorinated ones do. Compared with C8C8-4F (1-octylnonyl and fluorination) and C6C4-4Cl (2-butyloctyl and chlorination), C8C8-4Cl (1-octylnonyl and chlorination) exhibits a lower highest occupied molecular orbital level, higher electron mobility, and denser molecular packing. The OSCs based on PM6:C8C8-4Cl yield the best PCE of 14.11%, which is attributed to the faster charge transport, high miscibility, and preferable morphology. Moreover, the PM6:C8C8-4Cl devices retain 91.1% of the initial PCE after being placed in air with 67% relative humidity for 50 days. This work shows that the simultaneous optimization of side chains and end groups facilitates the CT and improves the stability in the OSCs, offering a novel view into the molecular design of A-D-A'-D-A-type NFREAs.

8.
Chemistry ; 28(26): e202104316, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253943

RESUMO

Two-dimensional (2D) hybrid perovskites with novel functionalities and structural diversity are a perfect platform for emerging optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. Here, we demonstrate that excess concentration of Cesium bromide (CsBr) is key to the formation of easily exfoliated 2D Cs2 Cu(Cl/Br)4 perovskite crystal. Furthermore, by employing this trick to 2D perovskite MA2 Cu(Cl/Br)4 (MA=methylammonium), we achieve a phase-pure easily exfoliated 2D mixed-cation (MA/Cs)2 Cu(Cl/Br)4 perovskite crystal, which exhibits reduced bandgap (1.53 eV) with ferromagnetic behavior and photovoltaic property. The resultant mixed-cation structured device reveals enhanced efficiency compared to all MA and all Cs counterparts. These findings demonstrate the importance of cation-engineering in developing innovative materials with novel properties.

9.
Front Chem ; 9: 746365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760869

RESUMO

A new dopant-free hole transporting material (HTM) 4',4‴,4‴'',4‴''''-(adamantane-1,3,5,7-tetrayl)tetrakis(N,N-bis(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine) (Ad-Ph-OMeTAD) (named FDY for short), which consists of a nonconjugated 3D bulky caged adamantane (Ad) as the core, triphenyl amines as side arms, and phenyl units as a linking bridge, is synthesized and applied in an inverted planar perovskite solar cell (PSC). As a result, the champion device with FDY as HTM yields an impressive power of conversion efficiency (PCE) of 18.69%, with JSC = 22.42 mA cm-2, VOC = 1.05 V, and FF = 79.31% under standard AM 1.5G illumination, which is ca. 20% higher than that of the device based on PEDOT:PSS (only 15.41%). Notably, the stability of PSC based on FDY is much better than that of devices based on PEDOT:PSS, and the corresponding devices retain over 90% of their initial PCEs after storing for 60 days in a nitrogen glove box without any encapsulation. Even when stored in an open air condition with 50-60% relative humidity for 188 h, the retained PCE is still over 81% of its initial one. All these results demonstrate that the new design strategy by combing the bulky and nonconjugated (aliphatic) adamantane unit as the core and triphenyl amines as side arms can efficiently develop highly efficient HTMs for PSCs, which is different from the traditional way based on conjugated backbones, and it may open a new way for scientists to design small-molecule HTMs for PSCs.

10.
Polymers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502954

RESUMO

Blue-color-emitting organic semiconductors are of significance for organic light-emitting diodes (OLEDs). In this study, through Suzuki coupling polymerization, three 1,4-naphthalene-based copolymers-namely, PNP(1,4)-PT, PNP(1,4)-TF, and PNP(1,4)-ANT-were designed and synthesized. The variation of comonomers, phenothiazine (PT), triphenylamine substituted fluorene (TF), and anthanthrene (ANT), effectively tuned the emitting color and device performance of poly(9-vinyl carbazole) (PVK)-based OLEDs. Especially, the polymer PNP(1,4)-TF, bearing perpendicular aryl side groups, showed a most twisted structural geometry, which enabled an ultra-high thermal stability and a best performance with blue emitting in PVK-host-based OLEDs. Overall, in this work, we demonstrate a promising blue-color-emitting polymer through structural geometry manipulation.

11.
Adv Sci (Weinh) ; 8(18): e2101729, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34263560

RESUMO

Organic-inorganic halide perovskites have demonstrated significant light detection potential, with a performance comparable to that of commercially available photodetectors. In this study, a general design guideline, which is applicable to both inverted and regular structures, is proposed for high-performance perovskite photodiodes through an interfacial built-in electric field (E) for efficient carrier separation and transport. The interfacial E generated at the interface between the active and charge transport layers far from the incident light is critical for effective charge carrier collection. The interfacial E can be modulated by unintentional doping of the perovskite, whose doping type and density can be easily controlled by the post-annealing time and temperature. Employing the proposed design guideline, the inverted and regular perovskite photodiodes exhibit the external quantum efficiency of 83.51% and 76.5% and responsivities of 0.37 and 0.34 A W-1 , respectively. In the self-powered mode, the dark currents reach 7.95 × 10-11 and 1.47 × 10-8 A cm-2 , providing high detectivities of 7.34 × 1013 and 4.96 × 1012 Jones, for inverted and regular structures, respectively, and a long-term stability of at least 1600 h. This optimization strategy is compatible with existing materials and device structures and hence leads to substantial potential applications in perovskite-based optoelectronic devices.

13.
Chem Commun (Camb) ; 56(65): 9388-9391, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32672784

RESUMO

We report on the facile synthesis of a water-dispersible conducting polymer, polyazulene-polystyrenesulfonate (PAZ:PSS), using PSS as a template. PAZ:PSS can achieve an overall conductivity up to 0.1 S cm-1, and an ion Seebeck coefficient as high as 4500 µV K-1, demonstrating that PAZ:PSS is another promising water-dispersible polymer for thermoelectrics.

14.
Adv Mater ; 32(33): e2001591, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32584502

RESUMO

There is little question that the "electronic revolution" of the 20th century has impacted almost every aspect of human life. However, the emergence of solid-state electronics as a ubiquitous feature of an advanced modern society is posing new challenges such as the management of electronic waste (e-waste) that will remain through the 21st century. In addition to developing strategies to manage such e-waste, further challenges can be identified concerning the conservation and recycling of scarce elements, reducing the use of toxic materials and solvents in electronics processing, and lowering energy usage during fabrication methods. In response to these issues, the construction of electronic devices from renewable or biodegradable materials that decompose to harmless by-products is becoming a topic of great interest. Such "green" electronic devices need to be fabricated on industrial scale through low-energy and low-cost methods that involve low/non-toxic functional materials or solvents. This review highlights recent advances in the development of biodegradable materials and processing strategies for electronics with an emphasis on areas where green electronic devices show the greatest promise, including solar cells, organic field-effect transistors, light-emitting diodes, and other electronic devices.

15.
Sci Rep ; 10(1): 7307, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350391

RESUMO

Flexible, light-weight and robust thermoelectric (TE) materials have attracted much attention to convert waste heat from low-grade heat sources, such as human body, to electricity. Carbon nanotube (CNT) yarn is one of the potential TE materials owing to its narrow band-gap energy, high charge carrier mobility, and excellent mechanical property, which is conducive for flexible and wearable devices. Herein, we propose a way to improve the power factor of CNT yarns fabricated from few-walled carbon nanotubes (FWCNTs) by two-step method; Joule-annealing in the vacuum followed by doping with p-type dopants, 2,3,5,6-tetrafluo-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Numerical calculations and experimental results explain that Joule-annealing and doping modulate the electronic states (Fermi energy level) of FWCNTs, resulting in extremely large thermoelectric power factor of 2250 µW m-1 K-2 at a measurement temperature of 423 K. Joule-annealing removes amorphous carbon on the surface of the CNT yarn, which facilitates doping in the subsequent step, and leads to higher Seebeck coefficient due to the transformation from (semi) metallic to semiconductor behavior. Doping also significantly increases the electrical conductivity due to the effective charge transfers between CNT yarn and F4TCNQ upon the removal of amorphous carbon after Joule-annealing.

16.
Nano Converg ; 7(1): 9, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152826

RESUMO

An electron-rich fused indoloindole-based poly(indoloindole-selenophene vinylene selenophene) was synthesized and characterized. Soxhlet can be obtained by continuously purifying the product with a specific solvent and obtaining a pure polymer with a high concentration. Molecular weight is affected by the vapor pressure of marginal solvent, and the polymer was fractionated using tetrahydrofuran, chloroform, and chlorobenzene. Solubility is closely related to the morphology of bulk heterojunction and device parameters. In the solution process of fabricating the organic solar cell, securement of solubility has a great effect on the performance of the device, because morphology and orientation of a photo-active layer which significantly affect charge transport in the device. Since tetrahydrofuran (THF) Soxhlet solvents have high vapor pressure and appropriate solubility parameters, THF induced the best solubility of P-IDI-SVS materials for organic solvents. And through additive optimization, the performance of the device based on P-IDI-SVS from THF-Soxhlet extraction was enhanced. This is expected to be a meaningful study because the effect on solubility of Soxhlet solvent suggests factors to be considered in the solution process in organic solar cell research. In addition, surface modified bulk heterojunction was observed using atomic force microscopy, photoluminescence, time-correlated single photon counting and Raman spectroscopy analysis.

17.
RSC Adv ; 10(3): 1786-1792, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494687

RESUMO

As the most popular conducting polymer, poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is widely used for a variety of applications, including thermoelectrics. This paper reports the modulation of the doping level by treatment with hydrazine to improve the Seebeck coefficient of PEDOT:PSS films. PEDOT:PSS films were first treated with formic acid followed by hydrazine, leading to a significant increase in the Seebeck coefficient from 17.5 to 42.7 µV K-1, about 2.5 times higher than that of the pristine film partially at the expense of electrical conductivity. An optimum power factor of 93.5 µW K-2 m-1, being 2.4 times that of the one treated with only formic acid, was achieved. The substantial improvement in the Seebeck coefficient and the power factor is collectively attributed to the removal of the PSS, and more importantly, the reduction of the doping level of PEDOT by the hydrazine treatment, which is evidenced clearly by UV-vis-NIR spectroscopy, XPS and Raman spectroscopy.

18.
Small ; 15(49): e1904715, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31642190

RESUMO

A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant-free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm-2 , VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL-1 ) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%-50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost-effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.

19.
Front Chem ; 7: 870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31970148

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most popular conducting polymers and widely used as polymer thermoelectric materials, and its thermoelectric performance could be improved by a variety of post-treatment processes. This paper reported two series of post-treatment methods to enhance the thermoelectric performance. The first series method included pre-treatment of PEDOT:PSS film with formamide, followed by imidazolium-based ionic liquids. The second series method included pre-treatment of PEDOT:PSS film with formamide, followed by sodium formaldehyde sulfoxylate, and finally imidazolium-based ionic liquids. Two series of post-treatment methods significantly improved the power factor of PEDOT:PSS when compared to that of PEDOT:PSS treated with formamide only. For example, using the first series post-treatment method with 40 vol.% ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide, the Seebeck coefficient of the PEDOT:PSS film increased from 14.9 to 28.5 µV/K although the electrical conductivity reduced from 2,873 to 1,701 S/cm, resulting in a substantial improvement in the overall power factor from 63.6 to 137.8 µW/K2m. The electrical conductivity enhancement in the formamide-treatment process was in part ascribed to the removal of the insulating PSS component. Further treatment of PEDOT:PSS film with ionic liquid caused dedoping of PEDOT and hence increased in Seebeck coefficient. In contrast, second series post-treatment method led to the reduction in electrical conductivity from 2,873 to 641 S/cm but a big improvement in the Seebeck coefficient from 14.9 to 61.1 µV/K and thus the overall power factor reached up to ~239.2 µW/K2m. Apart from the improvement in electrical conductivity, the increase in Seebeck coefficient is on account of the substantial dedoping of PEDOT polymer to its neutral form and thus leads to the big improvement of its Seebeck coefficient. The environmental stability of ionic liquid-treated PEDOT:PSS films were examined. It was found that the ionic liquid treated PEDOT:PSS retained more than 70% Seebeck coefficient and electrical conductivity at 75% RH humidity and 70°C for 480 h. The improved long-term TE stability is attributed to the strong ionic interaction between sulfonate anions and bulky imidazolium cations that effectively block the penetration of water and lessen the tendency to take up water from the air.

20.
RSC Adv ; 8(33): 18334-18340, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35541140

RESUMO

Several methods such as the addition of a polar solvent, an acid as well as various post-treatments have been used to improve the thermoelectric performance of conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films. This paper reports a method using a superacid, trifluoromethanesulfonic acid, in methanol to treat PEDO:PSS films to improve their thermoelectric performance. Treatment of PEDOT:PSS films with this superacid in methanol leads to a significant increase in electrical conductivity from 0.7 to 2980 S cm-1 together with a moderate increase in Seebeck coefficient from 17.6 to 21.9 µV K-1, giving a power factor of 142 µW m-1 K-2, one of the highest values reported in the literature for conductive polymers. The figure of merit (ZT) value is estimated to be 0.19 under optimized conditions. The enhancement of thermoelectric performance, particularly the increase in both electrical conductivity and Seebeck coefficient, is due to the removal of the insulating component and polymer chain realignment giving in turn a denser packing of the conductive PEDOT polymer chains. This post-treatment method would offer an alternative way to improve the thermoelectric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA