Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(9): e0309728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39226266

RESUMO

Monosodium glutamate (MSG) is a widely used food additive with conflicting evidence regarding its potential effects on human health, with proposed relevance for obesity and metabolic syndrome (MetS) or chronic kidney disease. As being able to accurately quantify the MSG dietary intake would help clarify the open issues, we constructed a predictive formula to estimate the daily intake of MSG in a rat model based on the urinary metabolic profile. Adult male Wistar rats were divided into groups receiving different daily amounts of MSG in drinking water (0.5, 1.5, and 3.0 g%), no MSG, and MSG withdrawal after 3.0% MSG treatment for 4 weeks. We then analyzed 24-hour urine samples for chemistries and metabolites using 1H NMR spectrometry and observed a strong correlation between urine pH, sodium, bicarbonate, alpha-ketoglutarate, citrate, fumarate, glutamate, methylamine, N-methyl-4-pyridone-3-carboxamide, succinate, and taurine and the daily MSG intake. Following the multiple linear regression analysis a simple formula model based on urinary Na+, citrate, and glutamate was most accurate and could be validated for estimating daily MSG intake. In conclusion, we propose that the daily MSG intake correlates with urinary metabolites in a rat model and that this new tool for monitoring the impact of MSG on health measures.


Assuntos
Metaboloma , Ratos Wistar , Glutamato de Sódio , Animais , Masculino , Ratos , Metaboloma/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 630: 158-166, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36155062

RESUMO

We previously demonstrated that monosodium glutamate (MSG) consumption increases trimethylamine (TMA) level in the renal tissue as well as dimethylamine and methylamine levels in urine of rats, suggesting the effects of MSG on humans. To better define the findings, we investigated whether MSG consumption alters serum trimethylamine N-oxide (TMAO) level, and as a consequence, induces kidney injury in the rat model. Adult male Wistar rats (n = 40) were randomized to be fed with a standard diet (control group) or a standard diet with 0.5, 1.5 or 3.0 g% MSG corresponding to 7, 21, or 42 g/day in 60 kg man, respectively in drinking water (MSG-treated groups), or a standard diet with 3.0 g% MSG in drinking water which was withdrawn after 4 weeks (MSG-withdrawal group). Blood and urine samples were collected to analyze the TMAO levels using 1H NMR and markers of kidney injury. Fecal samples were also collected for gut microbiota analysis. We found serum TMAO levels increased and urinary TMAO excretion decreased during MSG consumption, in parallel with the increase of the neutrophil gelatinase-associated lipocalin (NGAL) excretion which subsided with the withdrawal of MSG. The fecal 16 S rRNA analysis during MSG consumption showed gut microbiota changes with a consistent suppression of Akkermansia muciniphila, a mucin producing bacteria, but not of TMA-producing bacteria. In conclusions, our findings suggested that prolonged high dose MSG consumption may cause TMAO accumulation in the blood via reduction of renal excretion associated with acute kidney injury. The mechanisms by which MSG reduced TMAO excretion require further investigation.


Assuntos
Água Potável , Glutamato de Sódio , Akkermansia , Animais , Dimetilaminas , Intestinos , Lipocalina-2 , Masculino , Metilaminas , Mucinas , Ratos , Ratos Wistar , Eliminação Renal , Verrucomicrobia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA