Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 13(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005362

RESUMO

Sexual signaling is a fundamental component of sexual behavior of Ceratitis capitata that highly determines males' mating success. Nutritional status and age are dominant factors known to affect males' signaling performance and define the female decision to accept a male as a sexual partner. Wolbachia pipientis, a widespread endosymbiotic bacterium of insects and other arthropods, exerts several biological effects on its hosts. However, the effects of Wolbachia infection on the sexual behavior of medfly and the interaction between Wolbachia infection and adult food remain unexplored. This study was conducted to determine the effects of Wolbachia on sexual signaling of protein-fed and protein-deprived males. Our findings demonstrate that: (a) Wolbachia infection reduced male sexual signaling rates in both food regimes; (b) the negative effect of Wolbachia infection was more pronounced on protein-fed than protein-deprived males, and it was higher at younger ages, indicating that the bacterium regulates male sexual maturity; (c) Wolbachia infection alters the daily pattern of sexual signaling; and (d) protein deprivation bears significant descent on sexual signaling frequency of the uninfected males, whereas no difference was observed for the Wolbachia-infected males. The impact of our findings on the implementation of Incompatible Insect Technique (IIT) or the combined SIT/IIT towards controlling insect pests is discussed.

2.
Front Microbiol ; 11: 1080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582067

RESUMO

Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.

3.
PLoS One ; 15(3): e0229727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191724

RESUMO

The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasions promoted by the growth and development of international fruit trade. Hence, survival of immatures within infested fruit that are subjected to various conditions during transportation seems to be a crucial feature that promotes invasion success. Wolbachia pipientis is a common endosymbiont of insects and other arthropods generating several biological effects on its hosts. Existing information report the influence of Wolbachia on the fitness traits of insect host species, including the Mediterranean fruit fly. However, little is known regarding effects of Wolbachia infection on immature development in different host fruits and temperatures. This study was conducted to determine the development and survival of immature stages of four different Mediterranean fruit fly populations, either infected or uninfected with Wolbachia, in two hosts (apples, bitter oranges) under three constant temperatures (15, 25 and 30°C), constant relative humidity (45-55 ± 5%), and a photoperiod of 14L:10D. Our findings demonstrate both differential response of two fruit fly lines to Wolbachia infection and differential effects of the two Wolbachia strains on the same Mediterranean fruit fly line. Larva-to-pupa and larva-to-adult survival followed similar patterns and varied a lot among the four medfly populations, the two host fruits and the different temperatures. Pupation rates and larval developmental time were higher for larvae implanted in apples compared to bitter oranges. The survival rates of wildish medflies were higher than those of the laboratory adapted ones, particularly in bitter oranges. The Wolbachia infected medflies, expressed lower survival rates and higher developmental times, especially the wCer4 infected line. High temperatures constrained immature development and were lethal for the Wolbachia infected wCer4 medfly line. Lower temperatures inferred longer developmental times to immature stages of all medfly populations tested, in both host fruits. Implications on the ecology and survival of the fly in nature are discussed.


Assuntos
Ceratitis capitata/crescimento & desenvolvimento , Ceratitis capitata/microbiologia , Frutas/parasitologia , Estágios do Ciclo de Vida , Temperatura , Wolbachia/fisiologia , Animais , Larva/crescimento & desenvolvimento , Modelos de Riscos Proporcionais , Pupa/crescimento & desenvolvimento , Análise de Sobrevida
4.
BMC Microbiol ; 19(Suppl 1): 288, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870292

RESUMO

BACKGROUND: Insect species have established sophisticated symbiotic associations with diverse groups of microorganisms including bacteria which have been shown to affect several aspects of their biology, physiology, ecology and evolution. In addition, recent studies have shown that insect symbionts, including those localized in the gastrointestinal tract, can be exploited for the enhancement of sterile insect technique (SIT) applications against major insect pests such as the Mediterranean fruit fly (medfly) Ceratitis capitata. We previously showed that Enterobacter sp. AA26 can be used as probiotic supplement in medfly larval diet improving the productivity and accelerating the development of the VIENNA 8 genetic sexing strain (GSS), which is currently used in large scale operational SIT programs worldwide. RESULTS: Enterobacter sp. AA26 was an adequate nutritional source for C. capitata larvae, comprising an effective substitute for brewer's yeast. Incorporating inactive bacterial cells in the larval diet conferred a number of substantial beneficial effects on medfly biology. The consumption of bacteria-based diet (either as full or partial yeast replacement) resulted in decreased immature stages mortality, accelerated immature development, increased pupal weight, and elongated the survival under stress conditions. Moreover, neither the partial nor the complete replacement of yeast with Enterobacter sp. AA26 had significant impact on adult sex ratio, females' fecundity, adults' flight ability and males' mating competitiveness. The absence of both yeast and Enterobacter sp. AA26 (deprivation of protein source and possible other important nutrients) from the larval diet detrimentally affected the larval development, survival and elongated the immature developmental duration. CONCLUSIONS: Enterobacter sp. AA26 dry biomass can fully replace the brewer's yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS as assessed by the FAO/IAEA/USDA standard quality control tests. We discuss this finding in the context of mass-rearing and SIT applications.


Assuntos
Ceratitis capitata/fisiologia , Enterobacter/fisiologia , Controle Biológico de Vetores/métodos , Ração Animal , Animais , Biomassa , Ceratitis capitata/microbiologia , Feminino , Masculino , Probióticos/administração & dosagem , Comportamento Sexual Animal , Simbiose
5.
BMC Biotechnol ; 19(Suppl 2): 96, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847836

RESUMO

BACKGROUND: Wolbachia pipientis is a widespread, obligatory intracellular and maternally inherited bacterium, that induces a wide range of reproductive alterations to its hosts. Cytoplasmic Incompatibility (CI) is causing embryonic lethality, the most common of them. Despite that Wolbachia-borne sterility has been proposed as an environmental friendly pest control method (Incompatible Insect Technique, IIT) since 1970s, the fact that Wolbachia modifies important fitness components of its hosts sets severe barriers to IIT implementation. Mass rearing of Mediterranean fruit fly, Ceratitis capitata (medfly), is highly optimized given that this pest is a model species regarding the implementation of another sterility based pest control method, the Sterile Insect Technique (SIT). We used the medfly-Wolbachia symbiotic association, as a model system, to study the effect of two different Wolbachia strains, on the life history traits of 2 C. capitata lines with different genomic background. RESULTS: Wolbachia effects are regulated by both C. capitata genetic background and the Wolbachia strain. Wolbachia infection reduces fertility rates in both C. capitata genetic backgrounds and shortens the pre-pupa developmental duration in the GSS strain. On the other hand, regardless of the strain of Wolbachia (wCer2, wCer4) infection does not affect either the sex ratio or the longevity of adults. wCer4 infection imposed a reduction in females' fecundity but wCer2 did not. Male mating competitiveness, adults flight ability and longevity under water and food deprivation were affected by both the genetic background of medfly and the strain of Wolbachia (genotype by genotype interaction). CONCLUSION: Wolbachia infection could alter important life history traits of mass-reared C. capitata lines and therefore the response of each genotype on the Wolbachia infection should be considered toward ensuring the productivity of the Wolbachia-infected insects under mass-rearing conditions.


Assuntos
Infecções por Anaplasmataceae/veterinária , Ceratitis capitata/fisiologia , Wolbachia/patogenicidade , Animais , Ceratitis capitata/classificação , Ceratitis capitata/genética , Ceratitis capitata/microbiologia , Feminino , Fertilidade , Genótipo , Masculino , Comportamento Sexual Animal , Simbiose , Wolbachia/classificação , Wolbachia/genética
6.
PLoS One ; 13(12): e0208880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550598

RESUMO

The development of genetic sexing strains (GSSs) based on classical genetic approaches has revolutionized the application of the sterile insect technique (SIT) against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). The global use of Mediterranean fruit fly GSS for SIT applications as part of area-wide integrated pest management (AW-IPM) programmes is testimony to their effectiveness. During recent years, transgenic sexing strains (TSSs) have been developed through genetic engineering techniques offering the possibility to produce male-only progeny by introducing female embryonic lethal genes and to increase the efficacy to identify released sterile males by means of the expression of fluorescent transgene markers. Here, we present a comparative analysis of two Mediterranean fruit fly strains: the classical GSS VIENNA 8D53-/Toliman and the transgenic FSEL#32. The strains were compared for production efficiency and quality control indices under semi mass-rearing conditions, response to sterilizing irradiation doses, male mating performance in walk-in field cages, and production cost of male-only pupae. The results showed that, the FSEL #32 TSS had a similar fecundity but a higher production of male-only pupae than the VIENNA 8D53-/Toliman GSS. For some of the quality control parameters tested, such as pupal weight and survival under starvation conditions, the FSEL #32 TSS was inferior to the VIENNA 8D53-/Toliman GSS. Both the transgenic and the classical genetic sexing strains have shown acceptable and similar mating competitiveness when compared with wild males for mating with wild females. The cost production for both strains is similar but the FSEL#32 TSS may potentially be more cost effective at higher production levels. The results are discussed in the context of incorporating the transgenic strain for SIT application.


Assuntos
Animais Geneticamente Modificados/genética , Ceratitis capitata/genética , Genes Letais , Infertilidade Masculina/genética , Controle Biológico de Vetores , Animais , Ceratitis capitata/embriologia , Feminino , Masculino , Pupa/genética , Pupa/crescimento & desenvolvimento
7.
Front Microbiol ; 8: 2064, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163379

RESUMO

The Mediterranean fruit fly, Ceratitis capitata, is a major agricultural pest worldwide. The development of genetic sexing strains (GSSs) for this species that allows male-only sterile insects releases has boosted the effectiveness of the environmental friendly pest control method known as the sterile insect technique. The last generation of these strains, the VIENNA 7 and VIENNA 8, are currently used in all mass rearing facilities worldwide and are considered as models for such pest control applications. The sterile insect technique depends on the rearing of sufficient numbers of adequate "biological quality" laboratory flies to be released in the field. Currently, there is an increasing amount of studies focusing on the characterization of the symbiotic communities and development of probiotic diets. In our study, two bacterial isolates, an Enterobacter sp. (strain AA26) and a Klebsiella oxytoca strain, were used as probiotics in larval and adult diet. These strains have been shown to be beneficial, affecting several aspects related to the rearing efficiency and biological quality of the medfly VIENNA 8D53+ GSS. Our results demonstrate the effect of K. oxytoca on the developmental duration of the immature stages and, to some extent, on flight ability. On the other hand, our study does not support the presence of any beneficial effect of (a) K. oxytoca on pupal and adult recovery and adults' survival under stress conditions when provided as a larval diet supplement and (b) K. oxytoca and Enterobacter sp. AA26 on mating competitiveness when provided as adult diet supplements. Possible explanations for inconsistencies with previous studies and the need for universalizing protocols are discussed. Our findings, combined with previous studies can support the sterile insect technique, through the improvement of different aspects of mass rearing and biological properties of laboratory reared insect pests.

8.
Sci Rep ; 7(1): 4877, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687799

RESUMO

Ceratitis fasciventris is a serious agricultural pest of the Tephritidae family that belongs to the African Ceratitis FAR species complex. Species limits within the FAR complex are obscure and multidisciplinary approaches have attempted to resolve phylogenetic relationships among its members. These studies support the existence of at least three additional species in the complex, C. anonnae, C. rosa and C. quilicii, while they indicate the presence of two structured populations (F1 and F2) within the C. fasciventris species. In the present study we present the mitotic karyotype, polytene chromosome maps, in situ hybridization data and the complete mitochondrial genome sequence of an F2 population of C. fasciventris. This is the first polytene chromosome map and complete mitogenome of a member of the FAR complex and only the second reported for the Ceratitis genus. Both polytene chromosomes and mitochondrial sequence could provide valuable information and be used as reference for comparative analysis among the members of the complex towards the clarification of their phylogenetic relationships.


Assuntos
Filogenia , Cromossomos Politênicos , Tephritidae/classificação , Tephritidae/genética , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Hibridização In Situ , Cariotipagem , Análise de Sequência de DNA
9.
PLoS One ; 11(8): e0160232, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537351

RESUMO

The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and environment-friendly manner. The development of genetic sexing strains (GSS), such as the Vienna 8 strain, has been played a major role in increasing the efficacy and reducing the cost of SIT programs. However, mass rearing, extensive inbreeding, possible bottleneck phenomena and hitch-hiking effects might pose major risks for deterioration and loss of important genetic characteristics of domesticated insect. In the present study, we present a modified procedure to cryopreserve the embryos of the medfly Vienna 8 GSS based on vitrification and used this strain as insect model to assess the impact of the cryopreservation process on the genetic structure of the cryopreserved insects. Forty-eight hours old embryos, incubated at 24°C, were found to be the most suitable developmental stage for cryopreservation treatment for high production of acceptable hatch rate (38%). Our data suggest the absence of any negative impact of the cryopreservation process on egg hatch rate, pupation rates, adult emergence rates and stability of the temperature sensitive lethal (tsl) character on two established cryopreserved lines (flies emerged from cryopreserved embryos), named V8-118 and V8-228. Taken together, our study provides an optimized procedure to cryopreserve the medfly Vienna 8 GSS and documents the absence of any negative impact on the genetic structure and quality of the strain. Benefits and sceneries for utilization of this technology to support operational SIT projects are discussed in this paper.


Assuntos
Ceratitis capitata/embriologia , Criopreservação/métodos , Animais , Embrião não Mamífero , Feminino , Larva , Masculino , Mitocôndrias , Pupa
10.
PLoS One ; 10(9): e0136459, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325068

RESUMO

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation.


Assuntos
Ceratitis capitata/microbiologia , Enterobacter/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Animais , Ceratitis capitata/efeitos dos fármacos , Ceratitis capitata/crescimento & desenvolvimento , Dieta , Feminino , Larva/efeitos dos fármacos , Larva/microbiologia , Masculino , Polimorfismo de Fragmento de Restrição , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA