Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Biotechnol ; 84: 37-52, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332672

RESUMO

Vaccination is the most effective measure to prevent disease outbreaks in fish aquaculture, with oral vaccine administration emerging as the most practical approach. However, oral vaccines face a notable limitation due to insufficient stimulation of the complex gut-associated lymphoid tissue caused by factors such as vaccine degradation, poor absorption, and recognition by the immune cells. An innovative solution to these limitations lies in the plant-based production of recombinant vaccines. Plant cells enable the production and targeted storage of recombinant vaccines in specific cell organelles which ensure superior protection from degradation and contain natural compounds acting as adjuvants. Our study explores the potential of barley (Hordeum vulgare), a globally significant cereal crop, for producing orally administered subunit vaccines against viral infections affecting economically important fish species in the Salmonidae and Cyprinidae families. Through Agrobacterium-mediated transformation of immature barley embryos, we have generated homozygous T2 generation of transgenic barley expressing recombinant antigens of spring viremia of carp virus and infectious salmon anaemia virus. The expression of these plant-based recombinant vaccines was confirmed by immunodetection, which was supported by fluorescence observation, specifically in the seed endosperm. The antigenicity of transgenic plant material containing recombinant antigens was evaluated using an intubation model of common carp (Cyprinus carpio), revealing a substantial upregulation of the immunoglobulin transcripts in both systemic and mucosal tissues over a period of 28 days following a single dose of transgenic antigens. Collectively, these results underscore the potential of barley-based recombinant vaccines for disease prevention in fish aquaculture.

2.
Front Immunol ; 15: 1407237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947329

RESUMO

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Assuntos
Aeromonas hydrophila , Carpas , Citocinas , Eritrócitos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpas/imunologia , Carpas/microbiologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Citocinas/metabolismo , Citocinas/imunologia , Aeromonas hydrophila/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Fagocitose/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Imunidade Inata
3.
Parasitol Int ; 102: 102916, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38936764

RESUMO

A new genus, Cordicestus, is proposed to accommodate proteocephalid tapeworms parasitising gars (Lepisosteiformes: Lepisosteidae) in North and Central America that were previously placed in the polyphyletic genus Proteocephalus Weinland, 1858. The new genus differs from other proteocephalid genera by the particular morphology of the scolex, which is small, protrudes apically but has no apical organ, and bears flat, heart-shaped (= cordis) suckers. In addition, the species of the new genus have an elongated cirrus sac with an almost straight internal vas deferens and wide, sinuous ventral osmoregulatory canals with secondary canals directed outwards. The type species of the new genus, Cordicestus singularis (La Rue, 1911) n. comb., is redescribed based on new material from the shortnose gar, Lepisosteus platostomus Rafinesque (type host), and the spotted gar, L. oculatus Winchell, in the United States. Cordicestus rafaeli n. sp. is described from the tropical gar, Atractosteus tropicus Gill, in Mexico. The new species differs from its relatives primarily by the presence of craspedote proglottids (acraspedote in other species) and some biometric features. All species of Cordicestus are revised, including unidentified specimens from A. tropicus and the Cuban gar A. tristoechus (Bloch and Schneider) in Nicaragua and Cuba, respectively, which may be new species, and a key to the identification of these taxa is provided. Molecular data available for two nominal species of the new genus indicate the possible existence of another species of Cordicestus in Lepisosteus in the USA.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Peixes , Animais , Cestoides/classificação , Cestoides/anatomia & histologia , Cestoides/isolamento & purificação , Doenças dos Peixes/parasitologia , Infecções por Cestoides/veterinária , Infecções por Cestoides/parasitologia , Peixes/parasitologia , Fósseis , Estados Unidos , América Central , Filogenia
4.
Sci Rep ; 14(1): 3545, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347054

RESUMO

RNA interference (RNAi) is an effective approach to suppress gene expression and monitor gene regulation. Despite its wide application, its use is limited in certain taxonomic groups, including cnidarians. Myxozoans are a unique group of cnidarian parasites that diverged from their free-living ancestors about 600 million years ago, with several species causing acute disease in farmed and wild fish populations. In this pioneering study we successfully applied RNAi in blood stages of the myxozoan Sphaerospora molnari, combining a dsRNA soaking approach, real-time PCR, confocal microscopy, and Western blotting. For proof of concept, we knocked down two unusual actins, one of which is known to play a critical role in S. molnari cell motility. We observed intracellular uptake of dsRNA after 30 min and accumulation in all cells of the typical myxozoan cell-in-cell structure. We successfully knocked down actin in S. molnari in vitro, with transient inhibition for 48 h. We observed the disruption of the cytoskeletal network within the primary cell and loss of the characteristic rotational cell motility. This RNAi workflow could significantly advance functional research within the Myxozoa, offering new prospects for investigating therapeutic targets and facilitating drug discovery against economically important fish parasites.


Assuntos
Cnidários , Doenças dos Peixes , Myxozoa , Parasitos , Animais , Cnidários/genética , Interferência de RNA , Myxozoa/genética , Movimento Celular , Peixes , Actinas/genética , Doenças dos Peixes/genética , Filogenia
5.
Int J Parasitol ; 52(10): 667-675, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970383

RESUMO

In free-living cnidarians, minicollagens are major structural components in the biogenesis of nematocysts. Recent sequence mining and proteomic analysis demonstrate that minicollagens are also expressed by myxozoans, a group of evolutionarily ancient cnidarian endoparasites. Nonetheless, the presence and abundance of nematocyst-associated genes/proteins in nematocyst morphogenesis have never been studied in Myxozoa. Here, we report the gene expression profiles of three myxozoan minicollagens, ncol-1, ncol-3, and the recently identified noncanonical ncol-5, during the intrapiscine development of Myxidium lieberkuehni, the myxozoan parasite of the northern pike, Esox lucius. Moreover, we localized the myxozoan-specific minicollagen Ncol-5 in the developing myxosporean stages by Western blotting, immunofluorescence, and immunogold electron microscopy. We found that expression of minicollagens was spatiotemporally restricted to developing nematocysts within the myxospores during sporogenesis. Intriguingly, Ncol-5 is localized in the walls of nematocysts and predominantly in nematocyst tubules. Overall, we demonstrate that despite being significantly reduced in morphology, myxozoans retain structural components associated with nematocyst development in free-living cnidarians. Furthermore, our findings have practical implications for future functional and comparative studies as minicollagens are useful markers of the developmental phase of myxozoan parasites.


Assuntos
Cnidários , Myxozoa , Animais , Nematocisto , Proteômica , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Cnidários/genética , Cnidários/anatomia & histologia , Myxozoa/genética
6.
BMC Genomics ; 22(1): 198, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743585

RESUMO

BACKGROUND: Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. RESULTS: We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. CONCLUSIONS: The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians.


Assuntos
Myxozoa , Parasitos , Animais , Genoma , Estilo de Vida , Myxozoa/genética , Filogenia
7.
Biology (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546310

RESUMO

The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA