Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ther Oncolytics ; 16: 238-249, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32128359

RESUMO

Reovirus type 3 Dearing (reovirus) is a tumor-selective oncolytic virus currently under evaluation in clinical trials. Here, we report that the therapeutic efficacy of reovirus in head and neck squamous cell cancer can be enhanced by targeting the unfolded protein response (UPR) kinase, protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). PERK inhibition by GSK2606414 increased reovirus efficacy in both 2D and 3D models in vitro, while perturbing the normal host cell response to reovirus-induced endoplasmic reticulum (ER) stress. UPR reporter constructs were used for live-cell 3D spheroid imaging. Profiling of eIF2a-ATF4, IRE1a-XBP1, and ATF6 pathway activity revealed a context-dependent increase in eIF2a-ATF4 signaling due to GSK2606414. GSK2606414 blocked eIF2a-ATF4 signaling because of the canonical ER stress agent thapsigargin. In the context of reovirus infection, GSK2606414 induced eIF2a-ATF4 signaling. Knockdown of eIF2a kinases PERK, GCN2, and PKR revealed eIF2a-ATF4 reporter activity was dependent on either PERK or GCN2. Knockdown of ATF4 abrogated the GSK2606414-induced increase in reovirus protein levels, confirming eIF2a-ATF signaling as key to the observed phenotype. Our work identifies a novel approach to enhance the efficacy and replication of reovirus in a therapeutic setting.

2.
J Immunother Cancer ; 7(1): 214, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399043

RESUMO

BACKGROUND: Oncolytic viruses preferentially replicate in tumors as compared to normal tissue and promote immunogenic cell death and induction of host systemic anti-tumor immunity. HSV-1 was chosen for further development as an oncolytic immunotherapy in this study as it is highly lytic, infects human tumor cells broadly, kills mainly by necrosis and is a potent activator of both innate and adaptive immunity. HSV-1 also has a large capacity for the insertion of additional, potentially therapeutic, exogenous genes. Finally, HSV-1 has a proven safety and efficacy profile in patients with cancer, talimogene laherparepvec (T-VEC), an oncolytic HSV-1 which expresses GM-CSF, being the only oncolytic immunotherapy approach that has received FDA approval. As the clinical efficacy of oncolytic immunotherapy has been shown to be further enhanced by combination with immune checkpoint inhibitors, developing improved oncolytic platforms which can synergize with other existing immunotherapies is a high priority. In this study we sought to further optimize HSV-1 based oncolytic immunotherapy through multiple approaches to maximize: (i) the extent of tumor cell killing, augmenting the release of tumor antigens and danger-associated molecular pattern (DAMP) factors; (ii) the immunogenicity of tumor cell death; and (iii) the resulting systemic anti-tumor immune response. METHODS: To sample the wide diversity amongst clinical strains of HSV-1, twenty nine new clinical strains isolated from cold sores from otherwise healthy volunteers were screened across a panel of human tumor cell lines to identify the strain with the most potent tumor cell killing ability, which was then used for further development. Following deletion of the genes encoding ICP34.5 and ICP47 to provide tumor selectivity, the extent of cell killing and the immunogenicity of cell death was enhanced through insertion of a gene encoding a truncated, constitutively highly fusogenic form of the envelope glycoprotein of gibbon ape leukemia virus (GALV-GP-R-). A number of further armed derivatives of this virus were then constructed intended to further enhance the anti-tumor immune response which was generated following fusion-enhanced, oncolytic virus replication-mediated cell death. These viruses expressed GMCSF, an anti-CTLA-4 antibody-like molecule, CD40L, OX40L and/or 4-1BB, each of which is expected to act predominantly at the site and time of immune response initiation. Expression of these proteins was confirmed by ELISA and/or western blotting. Immunogenic cell death was assessed by measuring the levels of HMGB1 and ATP from cell free supernatants from treated cells, and by measuring the surface expression of calreticulin. GALV-GP-R- mediated cell to cell fusion and killing was tested in a range of tumor cell lines in vitro. Finally, the in vivo therapeutic potential of these viruses was tested using human A549 (lung cancer) and MDA-MB-231(breast cancer) tumor nude mouse xenograft models and systemic anti-tumor effects tested using dual flank syngeneic 4434 (melanoma), A20 (lymphoma) mouse tumor models alone and in combination with a murine anti-PD1 antibody, and 9 L (gliosarcoma) tumors in rats. RESULTS: The twenty nine clinical strains of HSV-1 isolated and tested demonstrated a broad range of tumor cell killing abilities allowing the most potent strain to be identified which was then used for further development. Oncolytic ability was demonstrated to be further augmented by the expression of GALV-GP-R- in a range of tumor cell lines in vitro and in mouse xenograft models in nude mice. The expression of GALV-GP-R- was also demonstrated to lead to enhanced immunogenic cell death in vitro as confirmed by the increased release of HMGB1 and ATP and increased levels of calreticulin on the cell surface. Experiments using the rat 9 L syngeneic tumor model demonstrated that GALV-GP-R- expression increased abscopal uninjected (anenestic) tumor responses and data using mouse 4434 tumors demonstrated that virus treatment increased CD8+ T cell levels both in the injected and uninjected tumor, and also led to increased expression of PD-L1. A combination study using varying doses of a virus expressing GALV-GP-R- and mGM-CSF and an anti-murine PD1 antibody showed enhanced anti-tumor effects with the combination which was most evident at low virus doses, and also lead to immunological memory. Finally, treatment of mice with derivatives of this virus which additionally expressed anti-mCTLA-4, mCD40L, m4-1BBL, or mOX40L demonstrated enhanced activity, particularly in uninjected tumors. CONCLUSION: The new HSV-1 based platform described provides a potent and versatile approach to developing new oncolytic immunotherapies for clinical use. Each of the modifications employed was demonstrated to aid in optimizing the potential of the virus to both directly kill tumors and to lead to systemic therapeutic benefit. For clinical use, these viruses are expected to be most effective in combination with other anti-cancer agents, in particular PD1/L1-targeted immune checkpoint blockade. The first virus from this program (expressing GALV-GP-R- and hGM-CSF) has entered clinical development alone and in combination with anti-PD1 therapy in a number of tumor types (NCT03767348).


Assuntos
Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/patogenicidade , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus
3.
Front Oncol ; 8: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057890

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a significant cause of cancer deaths. Cisplatin-based chemoradiotherapy is a standard of care for locally advanced disease. ATR and DNA-PK inhibition (DNA-PKi) are actively being investigated in clinical trials with preclinical data supporting clinical translation as radiosensitizers. Here, we hypothesized that targeting both ATR and DNA-PK with small molecule inhibitors would increase radiosensitization of HNSCC cell lines. Radiosensitization was assessed by Bliss independence analysis of colony survival data. Strong cell cycle perturbing effects were observed with ATR inhibition reversing the G2/M arrest observed for radiation-DNA-PKi. Increased apoptosis in combination groups was measured by Sub-G1 DNA populations. DNA-PKi increased radiation-induced RAD51 and gamma-H2Ax foci, with the addition of ATR inhibition reducing levels of both. A sharp increase in nuclear fragmentation after aberrant mitotic transit appears to be the main driver of decreased survival due to irradiation and dual ATR/DNA-PKi. Dual inhibition of DNA-PK and ATR represents a novel approach in combination with radiation, with efficacy appearing to be independent of p53 status. Due to toxicity concerns, careful assessment is necessary in any future translation of single or dual radiosensitization approaches. Ongoing clinical trials into the ATR inhibitor AZD6738 plus radiation, and the phenotypically similar combination of AZD6738 and the PARP inhibitor olaparib, are likely to be key in ascertaining the toxicity profile of such combinations.

4.
Sci Transl Med ; 10(425)2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367346

RESUMO

Improvements in cancer survival mean that long-term toxicities, which contribute to the morbidity of cancer survivorship, are being increasingly recognized. Late adverse effects (LAEs) in normal tissues after radiotherapy (RT) are characterized by vascular dysfunction and fibrosis causing volume loss and tissue contracture, for example, in the free flaps used for immediate breast reconstruction after mastectomy. We evaluated the efficacy of lentivirally delivered superoxide dismutase 2 (SOD2) overexpression and connective tissue growth factor (CTGF) knockdown by short hairpin RNA in reducing the severity of LAEs in an animal model of free flap LAEs. Vectors were delivered by intra-arterial injection, ex vivo, to target the vascular compartment. LVSOD2 and LVshCTGF monotherapy before irradiation resulted in preservation of flap volume or reduction in skin contracture, respectively. Flaps transduced with combination therapy experienced improvements in both volume loss and skin contracture. Both therapies reduced the fibrotic burden after irradiation. LAEs were associated with impaired vascular perfusion, loss of endothelial permeability, and stromal hypoxia, which were all reversed in the treatment model. Using a tumor recurrence model, we showed that SOD2 overexpression in normal tissues did not compromise the efficacy of RT against tumor cells but appeared to enhance it. LVSOD2 and LVshCTGF combination therapy by targeted, intravascular delivery reduced LAE severities in normal tissues without compromising the efficacy of RT and warrants translational evaluation as a free flap-targeted gene therapy.


Assuntos
Lentivirus/genética , Microvasos/patologia , Microvasos/fisiopatologia , Lesões por Radiação/patologia , Lesões por Radiação/fisiopatologia , Animais , Morte Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Fibrose , Terapia Genética , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fenótipo , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes , Pele/patologia , Superóxido Dismutase/metabolismo , Retalhos Cirúrgicos/irrigação sanguínea , Transgenes , Raios X
5.
BMC Cancer ; 17(1): 86, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143445

RESUMO

BACKGROUND: Concurrent cisplatin radiotherapy (CCRT) is a current standard-of-care for locally advanced head and neck squamous cell carcinoma (HNSCC). However, CCRT is frequently ineffective in patients with advanced disease. It has previously been shown that HSP90 inhibitors act as radiosensitizers, but these studies have not focused on CCRT in HNSCC. Here, we evaluated the HSP90 inhibitor, AUY922, combined with CCRT. METHODS: The ability of AUY922 to sensitize to CCRT was assessed in p53 mutant head and neck cell lines by clonogenic assay. Modulation of the CCRT induced DNA damage response (DDR) by AUY922 was characterized by confocal image analysis of RAD51, BRCA1, 53BP1, ATM and mutant p53 signaling. The role of FANCA depletion by AUY922 was examined using shRNA. Cell cycle checkpoint abrogation and chromosomal fragmentation was assessed by western blot, FACS and confocal. The role of ATM was also assessed by shRNA. AUY922 in combination with CCRT was assessed in vivo. RESULTS: The combination of AUY922 with cisplatin, radiation and CCRT was found to be synergistic in p53 mutant HNSCC. AUY922 leads to significant alterations to the DDR induced by CCRT. This comprises inhibition of homologous recombination through decreased RAD51 and pS1524 BRCA1 with a corresponding increase in 53BP1 foci, activation of ATM and signaling into mutant p53. A shift to more error prone repair combined with a loss of checkpoint function leads to fragmentation of chromosomal material. The degree of disruption to DDR signalling correlated to chromosomal fragmentation and loss of clonogenicity. ATM shRNA indicated a possible rationale for the combination of AUY922 and CCRT in cells lacking ATM function. CONCLUSIONS: This study supports future clinical studies combining AUY922 and CCRT in p53 mutant HNSCC. Modulation of the DDR and chromosomal fragmentation are likely to be analytical points of interest in such trials.


Assuntos
Cromossomos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Isoxazóis/farmacologia , Compostos Organoplatínicos/farmacologia , Resorcinóis/farmacologia , Animais , Proteína BRCA1/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Cromossomos/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/genética
6.
Oncotarget ; 7(30): 48517-48532, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27384486

RESUMO

Oncolytic viruses selectively target and replicate in cancer cells, providing us with a unique tool with which to target and kill tumour cells. These viruses come from a diverse range of viral families including reovirus type 3 Dearing (RT3D), a non-pathogenic human double-stranded RNA oncolytic virus, which has been shown to be an effective therapeutic agent, both as a mono-therapy and in combination with traditional chemotherapeutic drugs. This study investigated the interaction between RT3D and radiotherapy in melanoma cell lines with a BRAF mutant, Ras mutant or BRAF/Ras wild type genotype. The data indicates that RT3D combined with radiotherapy significantly increased cytotoxicity relative to either single agent, independent of genotype, both in vitro and in vivo. The mechanism of enhanced cytotoxicity was dependent on an increase in viral replication, mediated by CUG2 up-regulation and subsequent down-regulation of pPKR and p-eIF2α, leading to the activation of mitochondrial apoptotic signalling resulting in increased cell death.


Assuntos
Apoptose/efeitos da radiação , Melanoma/terapia , Mitocôndrias/metabolismo , Terapia Viral Oncolítica/métodos , Transdução de Sinais/efeitos da radiação , Replicação Viral , Animais , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Terapia Combinada/métodos , Regulação para Baixo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Orthoreovirus Mamífero 3/fisiologia , Melanoma/genética , Camundongos , Mitocôndrias/efeitos da radiação , Mutação , Vírus Oncolíticos/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Regulação para Cima , eIF-2 Quinase/metabolismo
7.
Plast Reconstr Surg ; 135(2): 475-487, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25626794

RESUMO

INTRODUCTION: Free flap gene therapy exploits a novel therapeutic window when viral vectors can be delivered into a flap ex vivo. The authors investigated the therapeutic potential of an adenovirally-delivered thymidine kinase/ganciclovir prodrug system expressed following vector delivery into a free flap. METHODS: The authors demonstrated direct in vitro cytotoxicity by treating a panel of malignant cell lines with the thymidine kinase/ganciclovir system and demonstrated significant cell kill proportional to the multiplicity of infection of adenoviral vector expressing thymidine kinase. Bystander cytotoxicity was demonstrated using conditioned media from producer cells (expressing adenovirally-delivered thymidine kinase and treated with ganciclovir) to demonstrate cytotoxicity in naive tumor cells. The authors investigated the effect of adenoviral vector expressing thymidine kinase/ganciclovir therapy in vivo, using models of microscopic and macroscopic residual disease in a rodent superficial inferior epigastric artery flap model. RESULTS: The authors observed retardation of tumor volume growth in both microscopic (p = 0.0004) and macroscopic (p = 0.0005) residual disease models and prolongation of animal survival. Gene expression studies demonstrated that viral genomic material was found predominantly in flap tissues but declined over time. CONCLUSIONS: The authors describe the utility of virally delivered enzyme/prodrug therapy, using a free flap as a vehicle for delivery. They discuss the merits and limitations of this approach and the unique role of therapeutic free flaps among reconstructive techniques available to the plastic surgeon.


Assuntos
Adenoviridae/genética , Ganciclovir/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos , Glioma/terapia , Pró-Fármacos/uso terapêutico , Retalhos Cirúrgicos , Timidina Quinase/administração & dosagem , Ativação Metabólica , Animais , Efeito Espectador , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Vírus Defeituosos/genética , Artérias Epigástricas , Ganciclovir/farmacocinética , Regulação Viral da Expressão Gênica , Glioma/patologia , Glioma/cirurgia , Gliossarcoma/patologia , Proteínas de Fluorescência Verde/genética , Humanos , Óperon Lac , Neoplasia Residual , Pró-Fármacos/farmacocinética , Ratos , Simplexvirus/enzimologia , Simplexvirus/genética , Retalhos Cirúrgicos/virologia , Timidina Quinase/metabolismo , Transplante Heterotópico , Proteínas Virais/administração & dosagem , Proteínas Virais/metabolismo
9.
Int J Radiat Oncol Biol Phys ; 85(4): 1110-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22981708

RESUMO

PURPOSE: To explore the activity of a potent Chk1 inhibitor (SAR-020106) in combination with radiation. METHODS AND MATERIALS: Colony and mechanistic in vitro assays and a xenograft in vivo model. RESULTS: SAR-020106 suppressed-radiation-induced G2/M arrest and reduced clonogenic survival only in p53-deficient tumor cells. SAR-020106 promoted mitotic entry following irradiation in all cell lines, but p53-deficient cells were likely to undergo apoptosis or become aneuploid, while p53 wild-type cells underwent a postmitotic G1 arrest followed by subsequent normal cell cycle re-entry. Following combined treatment with SAR-020106 and radiation, homologous-recombination-mediated DNA damage repair was inhibited in all cell lines. A significant increase in the number of pan-γH2AX-staining apoptotic cells was observed only in p53-deficient cell lines. Efficacy was confirmed in vivo in a clinically relevant human head-and-neck cell carcinoma xenograft model. CONCLUSION: The Chk1 inhibitor SAR-020106 is a potent radiosensitizer in tumor cell lines defective in p53 signaling.


Assuntos
Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Fase G2/efeitos dos fármacos , Isoquinolinas/farmacologia , Proteínas Quinases/efeitos dos fármacos , Pirazinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Radiossensibilizantes/farmacologia , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/genética , Fase G2/genética , Células HeLa , Histonas/análise , Humanos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Nus , Microscopia/métodos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Papillomaviridae/classificação , Tolerância a Radiação/genética , Imagem com Lapso de Tempo/métodos , Ensaio Tumoral de Célula-Tronco/métodos , Proteína Supressora de Tumor p53/deficiência
10.
Expert Opin Biol Ther ; 12(12): 1669-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23140488

RESUMO

INTRODUCTION: Locally advanced head and neck cancer carries a poor prognosis, even with standard combination (surgery, radiotherapy, chemotherapy) treatment regimens. There is a pressing need for novel therapies with activity against this tumour type. Oncolytic reovirus type 3 (Dearing) is preferentially cytotoxic in tumour cells with an activated Ras signalling pathway and represents a promising novel therapy with relevance in head and neck cancer. AREAS COVERED: In this review, we discuss the pre-clinical and clinical data that have underpinned the translational development of oncolytic reovirus thus far. In particular, we describe the iterative nature of the research programme through initial studies testing single-agent reovirus therapy and on to subsequent work in which reovirus has been combined with either radiotherapy or cytotoxic chemotherapy. We will trace the process by which oncolytic reovirus has reached Phase III evaluation in combination with carboplatin/paclitaxel in patients with platin-refractory, relapsed/metastatic head and neck cancer. EXPERT OPINION: Reovirus is a self-amplifying, cancer-selective agent that offers huge potential advantages over standard chemotherapy, targeted small molecules or monoclonal antibodies. However, it is most likely that reovirus will show efficacy and be approved in combination with standard modalities (cytotoxic chemotherapy or radiotherapy) or other targeted agents, especially those that modulate signal transduction pathways. The next 5 years are critical for the development of oncolytic reovirus as an anti-cancer therapy and hinge on the ongoing Phase III trial in head and neck cancer and other Phase II programmes.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Orthoreovirus Mamífero 3 , Terapia Viral Oncolítica , Ensaios Clínicos como Assunto , Humanos
11.
Cancer Res ; 71(3): 1071-80, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21148749

RESUMO

Oncogenic mutations in Kras occur in 40% to 45% of patients with advanced colorectal cancer (CRC). We have previously shown that chemotherapy acutely activates ADAM17, resulting in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. In this study, we examined the role of mutant Kras in regulating growth factor shedding and ADAM17 activity, using isogenic Kras mutant (MT) and wild-type (WT) HCT116 CRC cells. Significantly higher levels of TGF-α and VEGF were shed from KrasMT HCT116 cells, both basally and following chemotherapy treatment, and this correlated with increased pErk (phosphorylated extracellular signal regulated kinase)1/2 levels and ADAM17 activity. Inhibition of Kras, MEK (MAP/ERK kinase)1/2, or Erk1/2 inhibition abrogated chemotherapy-induced ADAM17 activity and TGF-α shedding. Moreover, we found that these effects were not drug or cell line specific. In addition, MEK1/2 inhibition in KrasMT xenografts resulted in significant decreases in ADAM17 activity and growth factor shedding in vivo, which correlated with dramatically attenuated tumor growth. Furthermore, we found that MEK1/2 inhibition significantly induced apoptosis both alone and when combined with chemotherapy in KrasMT cells. Importantly, we found that sensitivity to MEK1/2 inhibition was ADAM17 dependent in vitro and in vivo. Collectively, our findings indicate that oncogenic Kras regulates ADAM17 activity and thereby growth factor ligand shedding in a MEK1/2/Erk1/2-dependent manner and that KrasMT CRC tumors are vulnerable to MEK1/2 inhibitors, at least in part, due to their dependency on ADAM17 activity.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Genes ras , Mutação Puntual , Proteína ADAM17 , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cetuximab , Neoplasias Colorretais/enzimologia , Gefitinibe , Células HCT116 , Células HT29 , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Quinazolinas/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
12.
Clin Cancer Res ; 16(13): 3378-89, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570921

RESUMO

PURPOSE: We have shown previously that exposure to anticancer drugs can trigger the activation of human epidermal receptor survival pathways in colorectal cancer (CRC). In this study, we examined the role of ADAMs (a disintegrin and metalloproteinases) and soluble growth factors in this acute drug resistance mechanism. EXPERIMENTAL DESIGN: In vitro and in vivo models of CRC were assessed. ADAM-17 activity was measured using a fluorometric assay. Ligand shedding was assessed by ELISA or Western blotting. Apoptosis was assessed by flow cytometry and Western blotting. RESULTS: Chemotherapy (5-fluorouracil) treatment resulted in acute increases in transforming growth factor-alpha, amphiregulin, and heregulin ligand shedding in vitro and in vivo that correlated with significantly increased ADAM-17 activity. Small interfering RNA-mediated silencing and pharmacologic inhibition confirmed that ADAM-17 was the principal ADAM involved in this prosurvival response. Furthermore, overexpression of ADAM-17 significantly decreased the effect of chemotherapy on tumor growth and apoptosis. Mechanistically, we found that ADAM-17 not only regulated phosphorylation of human epidermal receptors but also increased the activity of a number of other growth factor receptors, such as insulin-like growth factor-I receptor and vascular endothelial growth factor receptor. CONCLUSIONS: Chemotherapy acutely activates ADAM-17, which results in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. Thus, pharmacologic inhibition of ADAM-17 in conjunction with chemotherapy may have therapeutic potential for the treatment of CRC.


Assuntos
Proteínas ADAM/metabolismo , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM17 , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Transplante de Neoplasias , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA