Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125611

RESUMO

Sexual dimorphism among mammals includes variations in the pain threshold. These differences are influenced by hormonal fluctuations in females during the estrous and menstrual cycles of rodents and humans, respectively. These physiological conditions display various phases, including proestrus and diestrus in rodents and follicular and luteal phases in humans, distinctly characterized by varying estrogen levels. In this study, we evaluated the capsaicin responses in male and female mice at different estrous cycle phases, using two murine acute pain models. Our findings indicate that the capsaicin-induced pain threshold was lower in the proestrus phase than in the other three phases in both pain assays. We also found that male mice exhibited a higher pain threshold than females in the proestrus phase, although it was similar to females in the other cycle phases. We also assessed the mRNA and protein levels of TRPV1 in the dorsal root and trigeminal ganglia of mice. Our results showed higher TRPV1 protein levels during proestrus compared to diestrus and male mice. Unexpectedly, we observed that the diestrus phase was associated with higher TRPV1 mRNA levels than those in both proestrus and male mice. These results underscore the hormonal influence on TRPV1 expression regulation and highlight the role of sex steroids in capsaicin-induced pain.


Assuntos
Capsaicina , Dor , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Capsaicina/farmacologia , Masculino , Feminino , Camundongos , Dor/metabolismo , Dor/genética , Hormônios Esteroides Gonadais/metabolismo , Ciclo Estral/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Caracteres Sexuais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Neurochem Res ; 49(3): 684-691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017313

RESUMO

In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined the expression of the glycine receptor subunits (α1-α3 and ß) in streptozotocin-induced diabetic Long-Evans rats by qPCR and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and ß subunits did not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which strongly suggests its involvement in diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Ratos , Animais , Glicina/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Estreptozocina/toxicidade , Neuropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Ratos Long-Evans , Medula Espinal/metabolismo , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894963

RESUMO

There is a clear need to expand the toolkit of adequate mouse models and cell lines available for preclinical studies of high-grade neuroendocrine lung carcinoma (small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC)). SCLC and LCNEC are two highly aggressive tumor types with dismal prognoses and few therapeutic options. Currently, there is an extreme paucity of material, particularly in the case of LCNEC. Given the lack of murine cell lines and transplant models of LCNEC, the need is imperative. In this study, we generated and examined new models of LCNEC and SCLC transplantable cell lines derived from our previously developed primary mouse LCNEC and SCLC tumors. RNA-seq analysis demonstrated that our cell lines and syngeneic tumors maintained the transcriptome program from the original transgenic primary tumor and displayed strong similarities to human SCLC or LCNEC. Importantly, the SCLC transplanted cell lines showed the ability to metastasize and mimic this characteristic of the human condition. In summary, we generated mouse cell line tools that allow further basic and translational research as well as preclinical testing of new treatment strategies for SCLC and LCNEC. These tools retain important features of their human counterparts and address the lack of LCNEC disease models.


Assuntos
Carcinoma de Células Grandes , Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Células Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patologia , Pulmão/patologia
4.
Cell Death Differ ; 30(5): 1366-1381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36899106

RESUMO

Gasdermin (GSDM)-mediated pyroptosis is functionally involved in multiple diseases, but Gasdermin-B (GSDMB) exhibit cell death-dependent and independent activities in several pathologies including cancer. When the GSDMB pore-forming N-terminal domain is released by Granzyme-A cleavage, it provokes cancer cell death, but uncleaved GSDMB promotes multiple pro-tumoral effects (invasion, metastasis, and drug resistance). To uncover the mechanisms of GSDMB pyroptosis, here we determined the GSDMB regions essential for cell death and described for the first time a differential role of the four translated GSDMB isoforms (GSDMB1-4, that differ in the alternative usage of exons 6-7) in this process. Accordingly, we here prove that exon 6 translation is essential for GSDMB mediated pyroptosis, and therefore, GSDMB isoforms lacking this exon (GSDMB1-2) cannot provoke cancer cell death. Consistently, in breast carcinomas the expression of GSDMB2, and not exon 6-containing variants (GSDMB3-4), associates with unfavourable clinical-pathological parameters. Mechanistically, we show that GSDMB N-terminal constructs containing exon-6 provoke cell membrane lysis and a concomitant mitochondrial damage. Moreover, we have identified specific residues within exon 6 and other regions of the N-terminal domain that are important for GSDMB-triggered cell death as well as for mitochondrial impairment. Additionally, we demonstrated that GSDMB cleavage by specific proteases (Granzyme-A, Neutrophil Elastase and caspases) have different effects on pyroptosis regulation. Thus, immunocyte-derived Granzyme-A can cleave all GSDMB isoforms, but in only those containing exon 6, this processing results in pyroptosis induction. By contrast, the cleavage of GSDMB isoforms by Neutrophil Elastase or caspases produces short N-terminal fragments with no cytotoxic activity, thus suggesting that these proteases act as inhibitory mechanisms of pyroptosis. Summarizing, our results have important implications for understanding the complex roles of GSDMB isoforms in cancer or other pathologies and for the future design of GSDMB-targeted therapies.


Assuntos
Neoplasias da Mama , Piroptose , Humanos , Feminino , Granzimas/genética , Granzimas/metabolismo , Peptídeo Hidrolases/metabolismo , Elastase de Leucócito/metabolismo , Gasderminas , Proteínas de Neoplasias/metabolismo , Caspases/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias da Mama/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo
5.
Pflugers Arch ; 475(5): 595-606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36964781

RESUMO

The primary function of dystrophin is to form a link between the cytoskeleton and the extracellular matrix. In addition to this crucial structural function, dystrophin also plays an essential role in clustering and organizing several signaling proteins, including ion channels. Proteomic analysis of the whole rodent brain has stressed the role of some components of the dystrophin-associated glycoprotein complex (DGC) as potential interacting proteins of the voltage-gated Ca2+ channels of the CaV2 subfamily. The interaction of CaV2 with signaling and scaffolding proteins, such as the DGC components, may influence their function, stability, and location in neurons. This work aims to study the interaction between dystrophin and CaV2.1. Our immunoprecipitation data showed the presence of a complex formed by CaV2.1, CaVα2δ-1, CaVß4e, Dp140, and α1-syntrophin in the brain. Furthermore, proximity ligation assays (PLA) showed that CaV2.1 and CaVα2δ-1 interact with dystrophin in the hippocampus and cerebellum. Notably, Dp140 and α1-syntrophin increase CaV2.1 protein stability, half-life, permanence in the plasma membrane, and current density through recombinant CaV2.1 channels. Therefore, we have identified the Dp140 and α1-syntrophin as novel interaction partners of CaV2.1 channels in the mammalian brain. Consistent with previous findings, our work provides evidence of the role of DGC in anchoring and clustering CaV channels in a macromolecular complex.


Assuntos
Distrofina , Proteômica , Animais , Distrofina/genética , Distrofina/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
6.
Adv Exp Med Biol ; 1422: 245-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988884

RESUMO

Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Temperatura , Temperatura Baixa , Fosfatidilinositóis , Colesterol/metabolismo
7.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954335

RESUMO

Lung cancer remains the leading cause of cancer deaths worldwide. Among the Non-Small Cell Carcinoma (NSCLC) category, Adenocarcinoma (ADC) represents the most common type, with different reported driver mutations, a bunch of models described and therapeutic options. Meanwhile, Pulmonary Sarcomatoid Carcinoma (PSC) is one of the rarest, with very poor outcomes, scarce availability of patient material, no effective therapies and no models available for preclinical research. Here, we describe that the combined deletion of Pten and Trp53 in the lungs of adult conditional mice leads to the development of both ADC and PSC irrespective of the lung targeted cell type after naphthalene induced airway epithelial regeneration. Although this model shows long latency periods and incomplete penetrance for tumor development, it is the first PSC mouse model reported so far, and sheds light on the relationships between ADC and PSC and their cells of origin. Moreover, human ADC show strong transcriptomic similarities to the mouse PSC, providing a link between both tumor types and the human ADC.

8.
Nat Rev Neurosci ; 23(10): 596-610, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35831443

RESUMO

The perception of nociceptive signals, which are translated into pain, plays a fundamental role in the survival of organisms. Because pain is linked to a negative sensation, animals learn to avoid noxious signals. These signals are detected by receptors, which include some members of the transient receptor potential (TRP) family of ion channels that act as transducers of exogenous and endogenous noxious cues. These proteins have been in the focus of the field of physiology for several years, and much knowledge of how they regulate the function of the cell types and organs where they are expressed has been acquired. The last decade has been especially exciting because the 'resolution revolution' has allowed us to learn the molecular intimacies of TRP channels using cryogenic electron microscopy. These findings, in combination with functional studies, have provided insights into the role played by these channels in the generation and maintenance of pain.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Dor , Sensação/fisiologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
9.
J Fungi (Basel) ; 8(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448573

RESUMO

Crayfish plague, caused by the oomycete pathogen Aphanomyces astaci, is one of the most devastating of the emerging infectious diseases. This disease is responsible for the decline of native European and Asian freshwater crayfish populations. Over the last few decades, some European crayfish populations were reported to display partial to total resistance to the disease. The immune response in these cases was similar to that exhibited by the natural carriers of the pathogen, North American freshwater crayfish, e.g., weak-to-strong melanization of colonizing hyphae. We tested the degree of resistance displayed by 29 native Iberian populations of Austropotamobius pallipes that were challenged by zoospores of the pathogen. We measured the following parameters: (i) mean survival time, (ii) cumulative mortality, and (iii) immune response, and found that the total cumulative mortality of all the challenged populations was 100%. The integration of the results from these parameters did not allow us to find differences in resistance towards A. astaci among the northern and central populations of the Iberian Peninsula. However, in the southern populations, we could identify four distinct population responses based on an evaluation of a GLM analysis. In the first case, the similar response could be explained by the effect of a pathogen strain with a lower-than-expected virulence, and/or an actual increase in resistance. In the Southern populations, these differences appear to be the consequence of either whole population or individual resistance. Individuals that survived for a longer period than the others showed a stronger immune response, i.e., presence of partially or fully melanized hyphae, which is similar to that of North American crayfish species. This might be the consequence of different mechanisms of resistance or/and tolerance towards A. astaci.

10.
Cancers (Basel) ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053540

RESUMO

BACKGROUND AND AIMS: Metastatic urothelial carcinoma (mUC) remains an incurable disease with limited treatment options after platinum-based chemotherapy and immune checkpoint blockade (ICB). Vinflunine has shown a modest increase in overall survival and remains a therapeutic option for chemo- and immunotherapy refractory tumours. However, biomarkers that could identify responding patients to vinflunine and possible alternative therapies after failure to treatment are still missing. In this study, we aimed to identify potential genomic biomarkers of vinflunine response in mUC patient samples and potential management alternatives. METHODS: Formalin-fixed paraffin-embedded samples of mUC patients (n = 23) from three university hospitals in Spain were used for genomic targeted-sequencing and transcriptome (using the Immune Profile panel by NanoString) analyses. Patients who received vinflunine after platinum-based chemotherapy failure were classified in non-responders (NR: progressive disease ≤ 3 months; n= 11) or responders (R: response ≥ 6 months; n = 12). RESULTS: Genomic characterization revealed that the most common alteration, TP53 mutations, had comparable frequency in R (6/12; 50%) and NR (4/11; 36%). Non-synonymous mutations in KTM2C (4/12; 33.3%), PIK3CA (3/12; 25%) and ARID2 (3/12; 25%) were predominantly associated with response. No significant difference was observed in tumour mutational burden (TMB) between R and NR patients. The NR tumours showed increased expression of diverse immune-related genes and pathways, including various interferon gamma-related genes. We also identified increased MAGEA4 expression as a potential biomarker of non-responding tumours to vinflunine treatment. CONCLUSIONS: Our data may help to identify potential genomic biomarkers of response to vinflunine. Moreover, tumours refractory to vinflunine showed immune signatures potentially associated with response to ICB. Extensive validation studies, including longitudinal series, are needed to corroborate these findings.

11.
J Neurosci ; 42(7): 1173-1183, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34965978

RESUMO

The physical interaction and functional cross talk among the different subtypes of neuronal nicotinic acetylcholine receptors (nAChRs) expressed in the various tissues is unknown. Here, we have investigated this issue between the only two nAChRs subtypes expressed, the α7 and α3ß4 subtypes, in a human native neuroendocrine cell (the chromaffin cell) using electrophysiological patch-clamp, fluorescence, and Förster resonance energy transfer (FRET) techniques. Our data show that α7 and α3ß4 receptor subtypes require their mutual and maximal efficacy of activation to increase their expression, to avoid their desensitization, and therefore, to increase their activity. In this way, after repetitive stimulation with acetylcholine (ACh), α7 and α3ß4 receptor subtypes do not desensitize, but they do with choline. The nicotinic current increase associated with the α3ß4 subtype is dependent on Ca2+ In addition, both receptor subtypes physically interact. Interaction and expression of both subtypes are reversibly reduced by tyrosine and serine/threonine phosphatases inhibition, not by Ca2+ In addition, expression is greater in human chromaffin cells from men compared to women, but FRET efficiency is not affected. Together, our findings indicate that human α7 and α3ß4 subtypes mutually modulate their expression and activity, providing a promising line of research to pharmacologically regulate their activity.SIGNIFICANCE STATEMENT Desensitization of nicotinic receptors is accepted to occur with repetitive agonist stimulation. However, here we show that human native α3ß4 and α7 nicotinic acetylcholine receptor (nAChR) subtypes do not desensitize, and instead, increase their activity when they are activated by the physiological agonist acetylcholine (ACh). An indispensable requirement is the activation of the other receptor subtype with maximal efficacy, and the presence of Ca2+ to cooperate in the case of the α3ß4 current increase. Because choline is an α3ß4 partial agonist, it will act as a limiting factor of nicotinic currents enhancement in the absence of ACh, but in its presence, it will further potentiate α7 currents.


Assuntos
Células Cromafins/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
12.
Neuropharmacology ; 195: 108632, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34097947

RESUMO

Cardiovascular side effects of varenicline and a case report of a hypertensive crisis in a varenicline-prescribed patient with pheochromocytoma have been reported. The goal of the present study was to determine whether such side effects might derive, in part, from increased exocytosis of secretory vesicles and subsequent catecholamine release triggered by varenicline in human chromaffin cells of the adrenal gland. In this study, we performed electrophysiological plasma membrane capacitance and carbon fiber amperometry experiments to evaluate the effect of varenicline on exocytosis and catecholamine release, respectively, at concentrations reached during varenicline therapy (100 nM). Experiments were conducted in the absence or presence of nicotine, at plasma concentrations achieved right after smoking (250 nM) or steady-state concentrations (110 nM), in chromaffin cells of the adrenal gland obtained from human organ donors. Cells were stimulated with short pulses (10 ms) of acetylcholine (ACh; 300 µM) applied at 0.2 Hz, in order to closer mimic the physiological situation at the splanchnic nerve-chromaffin cell synapse. In addition, rat chromaffin cells were used to compare the effects obtained in cells from a more readily available species. Varenicline increased the exocytosis of secretory vesicles in human and rat chromaffin cells in the presence of nicotine, effects that were not due to an increase of plasma membrane capacitance or currents triggered by the nicotinic agonists alone. These results should be considered in nicotine addiction therapies when varenicline is used.


Assuntos
Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Vareniclina/farmacologia , Acetilcolina/farmacologia , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Bovinos , Células Cromafins/metabolismo , Humanos , Ratos
13.
Gastroenterology ; 161(1): 301-317.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819485

RESUMO

BACKGROUND & AIMS: Limited understanding of pruritus mechanisms in cholestatic liver diseases hinders development of antipruritic treatments. Previous studies implicated lysophosphatidic acid (LPA) as a potential mediator of cholestatic pruritus. METHODS: Pruritogenicity of lysophosphatidylcholine (LPC), LPA's precursor, was examined in naïve mice, cholestatic mice, and nonhuman primates. LPC's pruritogenicity involving keratinocyte TRPV4 was studied using genetic and pharmacologic approaches, cultured keratinocytes, ion channel physiology, and structural computational modeling. Activation of pruriceptor sensory neurons by microRNA-146a (miR-146a), secreted from keratinocytes, was identified by in vitro and ex vivo Ca2+ imaging assays. Sera from patients with primary biliary cholangitis were used for measuring the levels of LPC and miR-146a. RESULTS: LPC was robustly pruritic in mice. TRPV4 in skin keratinocytes was essential for LPC-induced itch and itch in mice with cholestasis. Three-dimensional structural modeling, site-directed mutagenesis, and channel function analysis suggested a TRPV4 C-terminal motif for LPC binding and channel activation. In keratinocytes, TRPV4 activation by LPC induced extracellular release of miR-146a, which activated TRPV1+ sensory neurons to cause itch. LPC and miR-146a levels were both elevated in sera of patients with primary biliary cholangitis with itch and correlated with itch intensity. Moreover, LPC and miR-146a were also increased in sera of cholestatic mice and elicited itch in nonhuman primates. CONCLUSIONS: We identified LPC as a novel cholestatic pruritogen that induces itch through epithelia-sensory neuron cross talk, whereby it directly activates skin keratinocyte TRPV4, which rapidly releases miR-146a to activate skin-innervating TRPV1+ pruriceptor sensory neurons. Our findings support the new concept of the skin, as a sensory organ, playing a critical role in cholestatic itch, beyond liver, peripheral sensory neurons, and central neural pathways supporting pruriception.


Assuntos
Colestase/complicações , Queratinócitos/metabolismo , Lisofosfatidilcolinas , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Canais de Cátion TRPV/metabolismo , Adulto , Idoso , Animais , Comportamento Animal , Células Cultivadas , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prurido/induzido quimicamente , Prurido/genética , Prurido/fisiopatologia , Transdução de Sinais , Canais de Cátion TRPV/genética
14.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255148

RESUMO

The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1's actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.


Assuntos
Sinalização do Cálcio/genética , Mitocôndrias/genética , Dor/genética , Canais de Cátion TRPV/genética , Animais , Cálcio/metabolismo , Humanos , Mitocôndrias/metabolismo , Nociceptividade/fisiologia , Dor/fisiopatologia , Transdução de Sinais/genética
15.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481620

RESUMO

Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.


Assuntos
Canais de Cátion TRPV/fisiologia , Animais , Cálcio/metabolismo , Bovinos , Endotélio Vascular/metabolismo , Humanos , Rim/metabolismo , Camundongos , Microcirculação , Dor/metabolismo , Permeabilidade , Prognóstico , Domínios Proteicos , Ratos , Vasos Retinianos , Pele/metabolismo
16.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408609

RESUMO

The Transient Receptor Potential Vanilloid 1 (TRPV1) channel is a polymodal protein with functions widely linked to the generation of pain. Several agonists of exogenous and endogenous nature have been described for this ion channel. Nonetheless, detailed mechanisms and description of binding sites have been resolved only for a few endogenous agonists. This review focuses on summarizing discoveries made in this particular field of study and highlighting the fact that studying the molecular details of activation of the channel by different agonists can shed light on biophysical traits that had not been previously demonstrated.


Assuntos
Ativação do Canal Iônico , Domínios Proteicos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Animais , Sítios de Ligação/genética , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Canais de Cátion TRPV/genética
17.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471309

RESUMO

Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.


Assuntos
Androgênios/metabolismo , Estrogênios/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
18.
Proc Natl Acad Sci U S A ; 116(44): 22300-22306, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611390

RESUMO

High-grade neuroendocrine lung malignancies (large-cell neuroendocrine cell carcinoma, LCNEC, and small-cell lung carcinoma, SCLC) are among the most deadly lung cancer conditions with no optimal clinical management. The biological relationships between SCLC and LCNEC are still largely unknown and a current matter of debate as growing molecular data reveal high heterogeneity with potential therapeutic consequences. Here we describe murine models of high-grade neuroendocrine lung carcinomas generated by the loss of 4 tumor suppressors. In an Rbl1-null background, deletion of Rb1, Pten, and Trp53 floxed alleles after Ad-CMVcre infection in a wide variety of lung epithelial cells produces LCNEC. Meanwhile, inactivation of these genes using Ad-K5cre in basal cells leads to the development of SCLC, thus differentially influencing the lung cancer type developed. So far, a defined model of LCNEC has not been reported. Molecular and transcriptomic analyses of both models revealed strong similarities to their human counterparts. In addition, a 68Ga-DOTATOC-based molecular-imaging method provides a tool for detection and monitoring the progression of the cancer. These data offer insight into the biology of SCLC and LCNEC, providing a useful framework for development of compounds and preclinical investigations in accurate immunocompetent models.


Assuntos
Carcinoma de Células Pequenas/genética , Genes Supressores de Tumor , Neoplasias Pulmonares/genética , Tumores Neuroendócrinos/genética , Animais , Carcinoma de Células Pequenas/diagnóstico por imagem , Carcinoma de Células Pequenas/patologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Octreotida/análogos & derivados , Compostos Organometálicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Biochem Pharmacol ; 168: 429-437, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404530

RESUMO

Parkin (PRKN) is a ubiquitin E3 ligase that catalyzes the ubiquitination of several proteins. Mutations in the human Parkin gene, PRKN, leads to degeneration of dopaminergic (DA) neurons, resulting in autosomal recessive early-onset parkinsonism and the loss of PRKN function is linked to sporadic Parkinson's disease (PD). Additionally, several in vitro studies have shown that overexpression of exogenous PRKN protects against the neurotoxic effects induced by a wide range of cellular stressors, emphasizing the need to study the mechanism(s) governing PRKN expression and induction. Here, Prkn was identified as a novel target gene of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor and member of the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) superfamily. AhR binds and transactivates the Prkn gene promoter. We also demonstrated that AhR is expressed in DA neurons and that its activation upregulates Prkn mRNA and protein levels in the mouse ventral midbrain. Additionally, the AhR-dependent increase in PRKN levels is associated with a decrease in the protein levels of its target substrate, α-synuclein, in an AhR-dependent manner, because this effect is not observed in Ahr-null mice. These results suggest that treatments designed to induce PRKN expression through the use of nontoxic AhR agonist ligands may be novel strategies to prevent and delay PD.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Actinas/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/genética
20.
Aging Cell ; 18(5): e13002, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31305018

RESUMO

The study of Hutchinson-Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin-driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1-target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.


Assuntos
Senilidade Prematura/metabolismo , Núcleo Celular/metabolismo , Senescência Celular , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Senilidade Prematura/patologia , Células Cultivadas , Humanos , Fenótipo , Progéria/patologia , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA