Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicology ; 462: 152950, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534560

RESUMO

Sulfur mustard, a chemical warfare agent known to be a vesicant of skin, readily diffuses in the blood stream and reaches internal organs. In the present study, we used the analog (2-chloroethyl)-ethyl-sulfide (CEES) to provide novel data on the systemic diffusion of vesicants and on their ability to induce brain damage, which result in neurological disorders. SKH-1 hairless mice were topically exposed to CEES and sacrificed at different time until 14 days after exposure. A plasma metabolomics study showed a strong systemic impact following a self-protection mechanism to alleviate the injury of CEES exposure. This result was confirmed by the quantification of specific biomarkers in plasma. Those were the conjugates of CEES with glutathione (GSH-CEES), cysteine (Cys-CEES) and N-acetyl-cysteine (NAC-CEES), as well as the guanine adduct (N7Gua-CEES). In brain, N7Gua-CEES could be detected both in DNA and in organ extracts. Similarly, GSH-CEES, Cys-CEES and NAC-CEES were present in the extracts until day14. Altogether, these results, based on novel exposure markers, confirm the ability of vesicants to induce internal damage following dermal exposure. The observation of alkylation damage to glutathione and DNA in brain provides an additional mechanism to the neurological insult of SM.


Assuntos
Encéfalo/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Dano ao DNA/efeitos dos fármacos , Gás de Mostarda/análogos & derivados , Administração Cutânea , Animais , Substâncias para a Guerra Química/farmacocinética , Glutationa/metabolismo , Metabolômica , Camundongos , Camundongos Pelados , Gás de Mostarda/administração & dosagem , Gás de Mostarda/farmacocinética , Gás de Mostarda/toxicidade , Pele/metabolismo , Fatores de Tempo , Distribuição Tecidual
2.
Anal Bioanal Chem ; 413(5): 1337-1351, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410976

RESUMO

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.


Assuntos
Substâncias para a Guerra Química/efeitos adversos , Glutationa/análogos & derivados , Guanina/análogos & derivados , Gás de Mostarda/análogos & derivados , Animais , Linhagem Celular , Substâncias para a Guerra Química/análise , Cromatografia Líquida de Alta Pressão/métodos , Exposição Ambiental/efeitos adversos , Glutationa/efeitos adversos , Guanina/efeitos adversos , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Gás de Mostarda/efeitos adversos , Gás de Mostarda/análise , Pele/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade/métodos
3.
Talanta ; 143: 271-278, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078159

RESUMO

A comprehensive method for the determination and characterization of 15 common explosive compounds in water samples by ultra-high pressure liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS) is presented. The method allows the determination of 10 nitroaromatics, two nitroamines and three nitrate ester compounds. Among these, 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) was quantified and detected for the first time in our knowledge at trace levels (0.2 µg/L). Furthermore, the collision induced dissociation (CID) mass spectrum of TATB is discussed and a fragmentation mechanism is proposed. The signal for each explosive was normalized by isotopically-enriched congeners used as internal standards. The limits of detection (LOD) reached 20 ng/L, depending on the type of energetic molecule, which are adequate for water samples and the linearity was verified from 1.4 to 2 orders of magnitude. The sensitivity of the UHPLC-APCI-MS/MS approach allows direct injection of aqueous samples without preceding extraction for concentration. Besides, the method displays a good reliability with low signal suppression in various matrices such as spring water, mineral water, acidified water or ground water. The effectiveness of the method is demonstrated by the analysis of underground water samples containing traces of explosives from test fields in France.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA