Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stud Health Technol Inform ; 126: 105-14, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17476053

RESUMO

The eIMRT project is producing new remote computational tools for helping radiotherapists to plan and deliver treatments. The first available tool will be the IMRT treatment verification using Monte Carlo, which is a computational expensive problem that can be executed remotely on a GRID. In this paper, the current implementation of this process using GRID and SOA technologies is presented, describing the remote execution environment and the client.


Assuntos
Informática Médica , Método de Monte Carlo , Radioterapia de Intensidade Modulada , Humanos , Design de Software , Espanha
2.
J Chem Phys ; 120(18): 8582-6, 2004 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267785

RESUMO

The ground-state intermolecular potential energy surface for the fluorobenzene-argon van der Waals complex is evaluated using the coupled-cluster singles and doubles including connected triple excitations model, with the augmented correlation consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. In the surface minima the Ar atom is located above and below the fluorobenzene plane at a distance of 3.562 A from the fluorobenzene center of mass and at an angle of 6.33 degrees with respect to the axis perpendicular to the fluorobenzene plane. The corresponding binding energy is 391.1 cm(-1). Both these results and the eigenvalues obtained from the potential compare well with the experimental data available.

3.
J Chem Phys ; 120(19): 9104-12, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15267846

RESUMO

Ab initio ground state potential energy surfaces are obtained from interaction energies calculated with the coupled cluster singles and doubles model including connected triples corrections [CCSD(T)] and the aug-cc-pVXZ (X=5,Q,T,D) basis sets augmented with two different sets of midbond functions (denoted 33221 and 33211). The aug-cc-pV5Z-33221 surface is characterized by a T-shaped 49.5 cm(-1) minimum at Re=3.38 Angstroms and a linear saddle point at 3.95 Angstroms with De=36.6 cm(-1). These results agree well with the values provided by the accurate semiempirical potentials available. The rovibronic spectroscopic properties are determined and compared to the available experimental data and previous theoretical results. We study the basis set convergence of the intermolecular potentials and the rotational frequencies. The aug-cc-pVTZ basis sets provide reasonable binding parameters, but seem not to be converged enough for the evaluation of the microwave spectra. The aug-cc-pVQZ basis sets considerably improve the triple zeta results. The differences between the results obtained with the aug-cc-pVTZ-33221 basis set surface and those with the aug-cc-pVQZ-33221 are smaller than those of the corresponding bases with the set of 33211 midbond functions. The aug-cc-pVQZ surfaces are close to the aug-cc-pV5Z, that are expected to be close to convergence. With our best surfaces the errors in the frequencies with respect to the accurate experimental results go down to 0.6%.

4.
J Chem Phys ; 121(3): 1390-6, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15260683

RESUMO

Using the coupled cluster singles and doubles including connected triple excitations model with the augmented correlation consistent polarized valence double zeta basis set extended with a set of 3s3p2d1f1g midbond functions, we evaluate the ground state intermolecular potential energy surface of the chlorobenzene-argon van der Waals complex. The minima of 420 cm(-1) are characterized by Ar atom position vectors of the length 3.583 A, forming an angle of 9.87 degrees with respect to the axis perpendicular to the chlorobenzene plane. These results are compared to those obtained for similar complexes and to the experimental data available. From the potential the three-dimensional vibrational eigenfunctions and eigenvalues are calculated and the results allow to correct and complete the experimental assignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA