Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8250, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859314

RESUMO

Dietary fatty acids play a role in the pathogenesis of obesity-associated non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance (IR). Fatty acid composition is critical for IR and subsequent NAFLD development. Extra-virgin olive oil (EVOO) is the main source of monounsaturated fatty acids (MUFA) in Mediterranean diets. This study examined whether EVOO-containing high fat diets may prevent diet-induced NAFLD using Ldlr-/-. Leiden mice. In female Ldlr-/-.Leiden mice, the effects of the following high fat diets (HFDs) were examined: a lard-based HFD (HFD-L); an EVOO-based HFD (HFD-EVOO); a phenolic compounds-rich EVOO HFD (HFD-OL). We studied changes in body weight (BW), lipid profile, transaminases, glucose homeostasis, liver pathology and transcriptome. Both EVOO diets reduced body weight (BW) and improved insulin sensitivity. The EVOOs did not improve transaminase values and increased LDL-cholesterol and liver collagen content. EVOOs and HFD-L groups had comparable liver steatosis. The profibrotic effects were substantiated by an up-regulation of gene transcripts related to glutathione metabolism, chemokine signaling and NF-kappa-B activation and down-regulation of genes relevant for fatty acid metabolism. Collectivelly, EVOO intake improved weight gain and insulin sensitivity but not liver inflammation and fibrosis, which was supported by changes in hepatic genes expression.


Assuntos
Peso Corporal/efeitos dos fármacos , Resistência à Insulina , Obesidade/dietoterapia , Azeite de Oliva/farmacologia , Receptores de LDL/genética , Animais , Dieta Hiperlipídica , Dieta Mediterrânea , Feminino , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
2.
Med Res Rev ; 40(4): 1315-1334, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32017179

RESUMO

Human mesenchymal stromal cells (hMSCs) are emerging as one of the most important cell types in advanced therapies and regenerative medicine due to their great therapeutic potential. The development of hMSC-based products focuses on the use of hMSCs as biological active substances, and they are considered medicinal products by the primary health agencies worldwide. Due to their regulatory status, the development of hMSC-based products is regulated by specific criteria that range from the design phase, nonclinical studies, clinical studies, to the final registration and approval. Patients should only be administered hMSC-based products within the framework of a clinical trial or after the product has obtained marketing authorization; in both cases, authorization by health authorities is usually required. Considering the above, this paper describes the current general regulatory requirements for hMSC-based products, by jurisdiction, to be implemented throughout their entire development process. These measures may provide support for researchers from both public and private entities and academia to optimize the development of these products and their subsequent marketing, thereby improving access to them by patients.


Assuntos
Internacionalidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Controle Social Formal , Pesquisa Translacional Biomédica , Humanos , Marketing
3.
Pharmaceutics ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652984

RESUMO

Human Mesenchymal Stem Cells (hMSCs) play an important role as new therapeutic alternatives in advanced therapies and regenerative medicine thanks to their regenerative and immunomodulatory properties, and ability to migrate to the exact area of injury. These properties have made hMSCs one of the more promising cellular active substances at present, particularly in terms of the development of new and innovative hMSC-based products. Currently, numerous clinical trials are being conducted to evaluate the therapeutic activity of hMSC-based products on specific targets. Given the rapidly growing number of hMSC clinical trials in recent years and the complexity of these products due to their cellular component characteristics and medicinal product status, there is a greater need to define more stringent, specific, and harmonized requirements to characterize the quality of the hMSCs and enhance the analysis of their safety and efficacy in final products to be administered to patients. These requirements should be implemented throughout the manufacturing process to guarantee the function and integrity of hMSCs and to ensure that the hMSC-based final product consistently meets its specifications across batches. This paper describes the principal phases involved in the design of the manufacturing process and updates the specific technical requirements needed to address the appropriate clinical use of hMSC-based products. The challenges and limitations to evaluating the safety, efficacy, and quality of hMSCs have been also reviewed and discussed.

4.
Front Cell Neurosci ; 13: 204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156392

RESUMO

Radiotherapy is a highly effective tool for the treatment of brain cancer. However, radiation also causes detrimental effects in the healthy tissue, leading to neurocognitive sequelae that compromise the quality of life of brain cancer patients. Despite the recognition of this serious complication, no satisfactory solutions exist at present. Here we investigated the effects of intranasal administration of human mesenchymal stem cells (hMSCs) as a neuroprotective strategy for cranial radiation in mice. Our results demonstrated that intranasally delivered hMSCs promote radiation-induced brain injury repair, improving neurological function. This intervention confers protection against inflammation, oxidative stress, and neuronal loss. hMSC administration reduces persistent activation of damage-induced c-AMP response element-binding signaling in irradiated brains. Furthermore, hMSC treatment did not compromise the survival of glioma-bearing mice. Our findings encourage the therapeutic use of hMSCs as a non-invasive approach to prevent neurological complications of radiotherapy, improving the quality of life of brain tumor patients.

5.
Diabetologia ; 62(9): 1667-1680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250031

RESUMO

AIMS/HYPOTHESIS: Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and ß (ERß). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS: Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 µg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor ß (ERß) knockout (Erß-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS: Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERß-/- mice did not present BPA-induced changes, suggesting that ERß mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION: Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERß in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Receptor beta de Estrogênio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fenóis/farmacologia , Animais , Receptor alfa de Estrogênio/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo
6.
Mol Ther ; 26(11): 2696-2709, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195725

RESUMO

Diabetes is a chronic metabolic disorder that affects 415 million people worldwide. This pathology is often associated with long-term complications, such as critical limb ischemia (CLI), which increases the risk of limb loss and mortality. Mesenchymal stromal cells (MSCs) represent a promising option for the treatment of diabetes complications. Although MSCs are widely used in autologous cell-based therapy, their effects may be influenced by the constant crosstalk between the graft and the host, which could affect the MSC fate potential. In this context, we previously reported that MSCs derived from diabetic patients with CLI have a defective phenotype that manifests as reduced fibrinolytic activity, thereby enhancing the thrombotic risk and compromising patient safety. Here, we found that MSCs derived from diabetic patients with CLI not only exhibit a prothrombotic profile but also have altered multi-differentiation potential, reduced proliferation, and inhibited migration and homing to sites of inflammation. We further demonstrated that this aberrant cell phenotype is reversed by the platelet-derived growth factor (PDGF) BB, indicating that PDGF signaling is a key regulator of MSC functionality. These findings provide an attractive approach to improve the therapeutic efficacy of MSCs in autologous therapy for diabetic patients.


Assuntos
Diabetes Mellitus/genética , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Complicações do Diabetes/terapia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Humanos , Inflamação/patologia , Inflamação/terapia , Camundongos , Camundongos SCID , Osteogênese/genética , Fenótipo , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Transdução de Sinais , Cicatrização/genética
7.
Mol Ther Nucleic Acids ; 12: 463-477, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195784

RESUMO

Human pluripotent stem cells retain the extraordinary capacity to differentiate into pancreatic beta cells. For this particular lineage, more effort is still required to stress the importance of developing an efficient, reproducible, easy, and cost-effective differentiation protocol to obtain more mature, homogeneous, and functional insulin-secreting cells. In addition, microRNAs (miRNAs) have emerged as a class of small non-coding RNAs that regulate many cellular processes, including pancreatic differentiation. Some miRNAs are known to be preferentially expressed in islets. Of note, miR-375 and miR-7 are two of the most abundant pancreatic miRNAs, and they are necessary for proper pancreatic islet development. Here we provide new insight into specific miRNAs involved in pancreatic differentiation. We found that miR-7 is differentially expressed during the differentiation of human embryonic stem cells (hESCs) into a beta cell-like phenotype and that its modulation plays an important role in generating mature pancreatic beta cells. This strategy may be exploited to optimize the potential for in vitro differentiation of hESCs into insulin-producing beta-like cells for use in preclinical studies and future clinical applications as well as the prospective uses of miRNAs to improve this process.

8.
PLoS One ; 10(3): e0119904, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774684

RESUMO

Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic ß-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating ß-cell-like cells and demonstrates that RSV improves the maturation process.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Células-Tronco Embrionárias/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Estilbenos/farmacologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA