Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Rep ; 13(1): 10153, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349508

RESUMO

Clostridium species are re-emerging as biotechnological workhorses for industrial acetone-butanol-ethanol production. This re-emergence is largely due to advances in fermentation technologies but also due to advances in genome engineering and re-programming of the native metabolism. Several genome engineering techniques have been developed including the development of numerous CRISPR-Cas tools. Here, we expanded the CRISPR-Cas toolbox and developed a CRISPR-Cas12a genome engineering tool in Clostridium beijerinckii NCIMB 8052. By controlling the expression of FnCas12a with the xylose-inducible promoter, we achieved efficient (25-100%) single-gene knockout of five C. beijerinckii NCIMB 8052 genes (spo0A, upp, Cbei_1291, Cbei_3238, Cbei_3832). Moreover, we achieved multiplex genome engineering by simultaneously knocking out the spo0A and upp genes in a single step with an efficiency of 18%. Finally, we showed that the spacer sequence and position in the CRISPR array can affect the editing efficiency outcome.


Assuntos
Clostridium beijerinckii , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Butanóis/metabolismo , 1-Butanol/metabolismo , Edição de Genes/métodos
2.
Front Microbiol ; 13: 1064013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620068

RESUMO

One-carbon (C1) compounds are promising feedstocks for the sustainable production of commodity chemicals. CO2 is a particularly advantageous C1-feedstock since it is an unwanted industrial off-gas that can be converted into valuable products while reducing its atmospheric levels. Acetogens are microorganisms that can grow on CO2/H2 gas mixtures and syngas converting these substrates into ethanol and acetate. Co-cultivation of acetogens with other microbial species that can further process such products, can expand the variety of products to, for example, medium chain fatty acids (MCFA) and longer chain alcohols. Solventogens are microorganisms known to produce MCFA and alcohols via the acetone-butanol-ethanol (ABE) fermentation in which acetate is a key metabolite. Thus, co-cultivation of an acetogen and a solventogen in a consortium provides a potential platform to produce valuable chemicals from CO2. In this study, metabolic modeling was implemented to design a new co-culture of an acetogen and a solventogen to produce butyrate from CO2/H2 mixtures. The model-driven approach suggested the ability of the studied solventogenic species to grow on lactate/glycerol with acetate as co-substrate. This ability was confirmed experimentally by cultivation of Clostridium beijerinckii on these substrates in batch serum bottles and subsequently in pH-controlled bioreactors. Community modeling also suggested that a novel microbial consortium consisting of the acetogen Clostridium autoethanogenum, and the solventogen C. beijerinckii would be feasible and stable. On the basis of this prediction, a co-culture was experimentally established. C. autoethanogenum grew on CO2/H2 producing acetate and traces of ethanol. Acetate was in turn, consumed by C. beijerinckii together with lactate, producing butyrate. These results show that community modeling of metabolism is a valuable tool to guide the design of microbial consortia for the tailored production of chemicals from renewable resources.

3.
Appl Microbiol Biotechnol ; 105(9): 3533-3557, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900426

RESUMO

The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Assuntos
Clostridium , Etanol , Bactérias Anaeróbias , Butanóis , Clostridium/genética , Fermentação , Solventes
4.
Front Microbiol ; 11: 556064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042064

RESUMO

SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.

5.
Methods ; 172: 51-60, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31362039

RESUMO

Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Engenharia Metabólica/métodos , Plasmídeos/genética , 2-Propanol/metabolismo , Butanóis/metabolismo , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edição de Genes/métodos , Genoma Bacteriano/genética , Microbiologia Industrial/métodos , Mutação , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Transformação Bacteriana
6.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578270

RESUMO

Macroalgae (or seaweeds) are considered potential biomass feedstocks for the production of renewable fuels and chemicals. Their sugar composition is different from that of lignocellulosic biomasses, and in green species, including Ulva lactuca, the major sugars are l-rhamnose and d-glucose. C. beijerinckii DSM 6423 utilized these sugars in a U. lactuca hydrolysate to produce acetic acid, butyric acid, isopropanol, butanol, and ethanol (IBE), and 1,2-propanediol. d-Glucose was almost completely consumed in diluted hydrolysates, while l-rhamnose or d-xylose was only partially utilized. In this study, the metabolism of l-rhamnose by C. beijerinckii DSM 6423 was investigated to improve its utilization from natural resources. Fermentations on d-glucose, l-rhamnose, and a mixture of d-glucose and l-rhamnose were performed. On l-rhamnose, the cultures showed low growth and sugar consumption and produced 1,2-propanediol, propionic acid, and n-propanol in addition to acetic and butyric acids, whereas on d-glucose, IBE was the major product. On a d-glucose-l-rhamnose mixture, both sugars were converted simultaneously and l-rhamnose consumption was higher, leading to high levels of 1,2-propanediol (78.4 mM), in addition to 59.4 mM butanol and 31.9 mM isopropanol. Genome and transcriptomics analysis of d-glucose- and l-rhamnose-grown cells revealed the presence and transcription of genes involved in l-rhamnose utilization and in bacterial microcompartment (BMC) formation. These data provide useful insights into the metabolic pathways involved in l-rhamnose utilization and the effects on the general metabolism (glycolysis, early sporulation, and stress response) induced by growth on l-rhamnose.IMPORTANCE A prerequisite for a successful biobased economy is the efficient conversion of biomass resources into useful products, such as biofuels and bulk and specialty chemicals. In contrast to other industrial microorganisms, natural solvent-producing clostridia utilize a wide range of sugars, including C5, C6, and deoxy-sugars, for production of long-chain alcohols (butanol and 2,3-butanediol), isopropanol, acetone, n-propanol, and organic acids. Butanol production by clostridia from first-generation sugars is already a commercial process, but for the expansion and diversification of the acetone, butanol, and ethanol (ABE)/IBE process to other substrates, more knowledge is needed on the regulation and physiology of fermentation of sugar mixtures. Green macroalgae, produced in aquaculture systems, harvested from the sea or from tides, can be processed into hydrolysates containing mixtures of d-glucose and l-rhamnose, which can be fermented. The knowledge generated in this study will contribute to the development of more efficient processes for macroalga fermentation and of mixed-sugar fermentation in general.


Assuntos
Metabolismo dos Carboidratos , Clostridium beijerinckii/metabolismo , Fermentação , Ramnose/metabolismo , Ácido Acético/metabolismo , Biocombustíveis , Butiratos/metabolismo , Metabolismo dos Carboidratos/genética , Clostridium beijerinckii/genética , Etanol/metabolismo , Glucose/metabolismo , Propionatos/metabolismo , Propilenoglicol , Alga Marinha/química , Ulva/química
7.
J Microbiol Methods ; 140: 5-11, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28610973

RESUMO

CRISPR/Cas-based genetic engineering has revolutionised molecular biology in both eukaryotes and prokaryotes. Several tools dedicated to the genomic transformation of the Clostridium genus of Gram-positive bacteria have been described in the literature; however, the integration of large DNA fragments still remains relatively limited. In this study, a CRISPR/Cas9 genome editing tool using a two-plasmid strategy was developed for the solventogenic strain Clostridium acetobutylicum ATCC 824. Codon-optimised cas9 from Streptococcus pyogenes was placed under the control of an anhydrotetracycline-inducible promoter on one plasmid, while the gRNA expression cassettes and editing templates were located on a second plasmid. Through the sequential introduction of these vectors into the cell, we achieved highly accurate genome modifications, including nucleotide substitution, gene deletion and cassette insertion up to 3.6kb. To demonstrate its potential, this genome editing tool was used to generate a marker-free mutant of ATCC 824 that produced an isopropanol-butanol-ethanol mixture. Whole-genome sequencing confirmed that no off-target modifications were present in the mutants. Such a tool is a prerequisite for efficient metabolic engineering in this solventogenic strain and provides an alternative editing strategy that might be applicable to other Clostridium strains.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium acetobutylicum/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Proteínas de Bactérias/genética , Clostridium acetobutylicum/metabolismo , Deleção de Genes , Engenharia Metabólica , Mutagênese Insercional , Plasmídeos
8.
J Appl Phycol ; 28(6): 3511-3525, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28035175

RESUMO

The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg-1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L-1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg-1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

9.
Bioresour Technol ; 137: 153-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584415

RESUMO

In this study, the removal of IBE from aqueous solutions by gas stripping has been characterized. The effect of one or more components in the solution on the kinetics of the separation has been studied, both at 37°C and at 70°C. Gas stripping has been applied to batch, repeated batch and continuous cultures of Clostridium beijerinckii grown on a glucose/xylose mixed sugar substrate mimicking lignocellulosic hydrolysates, with the aim of finding optimal conditions for a stable IBE-producing culture with high productivity. An innovative repeated-batch process has been demonstrated in which the gas-stripping is performed at 70°C, resulting in a prolonged stable IBE culture.


Assuntos
2-Propanol/química , Butanóis/química , Fracionamento Químico/métodos , Clostridium beijerinckii/metabolismo , Etanol/química , Fermentação , Reatores Biológicos , Técnicas de Cultura de Células , Glucose/metabolismo , Cinética , Nitrogênio/química
10.
Bioresour Technol ; 128: 431-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23201525

RESUMO

Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L).


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Alga Marinha/microbiologia , Acetona/isolamento & purificação , Biomassa , Butanóis/isolamento & purificação , Etanol/isolamento & purificação
11.
AMB Express ; 2(1): 45, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22909015

RESUMO

Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia.

12.
Appl Microbiol Biotechnol ; 94(3): 729-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22249720

RESUMO

In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to the wild type. In this work, a C. acetobutylicum mutant strain with a selectively disrupted ack gene, encoding AK, was constructed and genetically and physiologically characterized. The ack (-) strain showed a reduction in acetate kinase activity of more than 97% compared to the wild type. The fermentation profiles of the ack (-) and wild-type strain were compared using two different fermentation media, CGM and CM1. The latter contains acetate and has a higher iron and magnesium content than CGM. In general, fermentations by the mutant strain showed a clear shift in the timing of peak acetate production relative to butyrate and had increased acid uptake after the onset of solvent formation. Specifically, in acetate containing CM1 medium, acetate production was reduced by more than 80% compared to the wild type under the same conditions, but both strains produced similar final amounts of solvents. Fermentations in CGM showed similar peak acetate and butyrate levels, but increased acetoin (60%), ethanol (63%) and butanol (16%) production and reduced lactate (-50%) formation by the mutant compared to the wild type. These findings are in agreement with the proposed regulatory function of butyryl phosphate as opposed to acetyl phosphate in the metabolic switch of solventogenic clostridia.


Assuntos
Acetato Quinase/genética , Acetato Quinase/metabolismo , Ácido Acético/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Técnicas de Inativação de Genes , Acetoína/metabolismo , Butanóis/metabolismo , Butiratos/metabolismo , Clostridium acetobutylicum/metabolismo , Meios de Cultura/química , Etanol/metabolismo , Fermentação
13.
Appl Environ Microbiol ; 77(8): 2582-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21335380

RESUMO

Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. acetobutylicum under the control of two strong promoters, the constitutive thl promoter and the late exponential adc promoter. Both ACR-overproducing strains were grown in batch cultures, during which 89 to 90% of the natively produced acetoin was converted to 20 to 22 mM d-2,3-butanediol. The addition of a racemic mixture of acetoin led to the production of both d-2,3-butanediol and meso-2,3-butanediol. A metabolic network that is in agreement with the experimental data is proposed. Native 2,3-butanediol production is a first step toward a potential homofermentative 2-butanol-producing strain of C. acetobutylicum.


Assuntos
Oxirredutases do Álcool/metabolismo , Butileno Glicóis/metabolismo , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/genética , Oxirredutases do Álcool/genética , Biocombustíveis/microbiologia , Cromatografia Líquida de Alta Pressão , Clostridium acetobutylicum/genética , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Engenharia Genética , Regiões Promotoras Genéticas , Estereoisomerismo
14.
Appl Environ Microbiol ; 73(12): 3822-32, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468286

RESUMO

Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Celulases/metabolismo , Celulossomas/enzimologia , Clostridium cellulolyticum/enzimologia , Complexos Multienzimáticos/biossíntese , Neocallimastix/enzimologia , Celulose/metabolismo , Cromatografia em Gel , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Cinética , Engenharia de Proteínas/métodos , Especificidade por Substrato
15.
Appl Environ Microbiol ; 70(9): 5238-43, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345405

RESUMO

Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of beta-1,3- and beta-1,4-linked beta-D-glucose units. C. acetobutylicum does not degrade cellulose, although its genome sequence contains several cellulase-encoding genes and a complete cellulosome cluster of cellulosome genes. In the present study, we demonstrate that a low but significant level of induction of cellulase activity occurs during growth on xylose or lichenan. The celF gene, located in the cellulosome-like gene cluster and coding for a unique cellulase that belongs to glycoside hydrolase family 48, was cloned in Escherichia coli, and antibodies were raised against the overproduced CelF protein. A Western blot analysis suggested a possible catabolite repression by glucose or cellobiose and an up-regulation by lichenan or xylose of the extracellular production of CelF by C. acetobutylicum. Possible reasons for the apparent inability of C. acetobutylicum to degrade cellulose are discussed.


Assuntos
Celulase/metabolismo , Clostridium/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Celulase/biossíntese , Primers do DNA , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato
16.
Appl Environ Microbiol ; 69(2): 869-77, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12571006

RESUMO

The genome sequence of Clostridium acetobutylicum ATCC 824, a noncellulolytic solvent-producing strain, predicts the production of various proteins with domains typical for cellulosomal subunits. Most of the genes coding for these proteins are grouped in a cluster similar to that found in cellulolytic clostridial species, such as Clostridium cellulovorans. CAC0916, one of the open reading frames present in the putative cellulosome gene cluster, codes for CelG, a putative endoglucanase belonging to family 9, and it was cloned and overexpressed in Escherichia coli. The overproduced CelG protein was purified by making use of its high affinity for cellulose and was characterized. The biochemical properties of the purified CelG were comparable to those of other known enzymes belonging to the same family. Expression of CelG by C. acetobutylicum grown on different substrates was studied by Western blotting by using antibodies raised against the purified E. coli-produced protein. Whereas the antibodies cross-reacted with CelG-like proteins secreted by cellobiose- or cellulose-grown C. cellulovorans cultures, CelG was not detectable in extracellular medium from C. acetobutylicum grown on cellobiose or glucose. However, notably, when lichenan-grown cultures were used, several bands corresponding to CelG or CelG-like proteins were present, and there was significantly increased extracellular endoglucanase activity.


Assuntos
Proteínas de Bactérias , Celulase/biossíntese , Clostridium/enzimologia , Família Multigênica , Sequência de Aminoácidos , Celulase/genética , Celulose/metabolismo , Clostridium/genética , Meios de Cultura , Glucanos/metabolismo , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA