Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 341(4): 431-439, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38374761

RESUMO

It is well known that hormones influence and direct most facets of physiology; however, there is still contention regarding the directions of certain relationships, for example, between gonadal hormones and immunity. Among the many proposed relationships relating to gonadal-immune interactions, support for immunosuppressive effects of androgens remains prominent within physiological literature. Although ample study has been directed toward the immunosuppressive effects of androgens, considerable disagreement remains regarding their influence on immune function. In this study, we test the hypothesis that androgens inhibit immunocompetence in the American alligator (Alligator mississippiensis). Developing alligators were incubated at female-producing temperatures with a subset of individuals being exposed to 17-α-methyltestosterone (MT) before sexual determination. 17-α-methyltestosterone is a potent androgen, not aromatizable by crocodilians, that has been found to exert masculinizing effects in exposed crocodilian populations in vivo and in vitro. Additionally, a subset of animals was exposed to a novel antigen to quantify innate and acquired immune function. We recovered no significant differences in leukocyte ratios or proportions between groups and found no significant differences in innate immune function as measured by hemolysis-hemagglutination. However, we did find significant differences in acquired immune function, where masculinized individuals expressed greater antibody titers. Our findings reject the hypothesis that androgens suppress immune function; rather, androgens may be immunoenhancing to acquired humoral responses and neutral to innate humoral immunity in crocodilians.


Assuntos
Jacarés e Crocodilos , Androgênios , Humanos , Feminino , Animais , Androgênios/farmacologia , Metiltestosterona/farmacologia , Esteroides , Gônadas , Terapia de Imunossupressão
2.
Animals (Basel) ; 12(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139341

RESUMO

Among vertebrates, some of the most vulnerable taxa to emergent fungal pathogens are members of Reptilia. In light of the growing threat of emergent fungal pathogens affecting wildlife, it is important to broaden the current understanding of immune system function, development, and evolution. The homologous condition of a trait is necessary in order to study its evolution, as such, homology is necessary in the study of immunological evolution. Here, we explore the evolution of toll-like receptors (TLRs), a series of homologous receptors crucial to the initial immune response. The homologous condition of TLR genes provides a unique system in which to explore the evolution of the TLR; using a Reptilian phylogeny, we elucidate the immune condition of the basal diapsid. Our analysis revealed that the basal diapsid may have had an immune system that lacked two receptors: TLR 15, a receptor uniquely present in Reptilia, and TLR 13, a receptor important in the recognition of nucleic acid motifs. Additionally, our analysis showed multiple losses and convergences for various TLRs, likely attributed to redundancies in receptor function. Further exploration into the immune condition of extinct taxa may shed light on the evolution of the reptilian immune system.

3.
J Exp Zool A Ecol Integr Physiol ; 333(10): 820-828, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075211

RESUMO

Longevity patterns in most vertebrates suggest that females benefit most from maintenance investment. A reversed longevity pattern in loggerhead musk turtles (Sternotherus minor) allowed us to test trade-offs between maintenance and survivorship. We tested the hypothesis that the sex with greater longevity has greater maintenance than the sex with shorter longevity. We also compared the following parameters between sexes: Bactericidal ability (BA) and heterophil:lymphocyte ratios (HLR). Baseline blood samples were collected from turtles in the field; a subset of turtles was returned to a laboratory for experiments of acquired immune responses to sheep red blood cells (SRBC). We found no support for the original hypothesis of reversal in sex-dependent immune trade-offs (difference between sex SRBC titers: p = .102; interaction between treatment and sex: p = .177; difference between treatments: p < .001; effect of sex on BA: p = .830; effect of sex on HLR: p = .717). However, we did find support for sex-dependent differences in immunity in the relationship between HLR and body condition (BCI) (effect of BCI on HLR: p = .015). In field conditions, we found that males with higher body condition indices express stressed phenotypes more than males with lower body condition indices (p = .002). However, females expressed similar stress loads across all body conditions (p = .900). Testosterone concentrations were assayed in free-living turtles and were not related to any of the immune parameters. Our results suggest that the immune systems play an important role in balancing sex-specific responses to different selective pressures in S. minor.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Tartarugas/imunologia , Animais , Atividade Bactericida do Sangue , Feminino , Testes de Hemaglutinação , Contagem de Leucócitos , Longevidade/imunologia , Masculino , Fatores Sexuais , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA