RESUMO
During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.
Assuntos
Células Endoteliais , Proteínas da Matriz Extracelular , Camundongos , Animais , Proteínas da Matriz Extracelular/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Colágeno/metabolismoRESUMO
Ca2+ signaling is one of the essential signaling systems for T lymphocyte activation, the latter being an essential step in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Store-operated Ca2+ entry (SOCE) ensures long lasting Ca2+ signaling and is of utmost importance for major downstream T lymphocyte activation steps, e.g. nuclear localization of the transcription factor 'nuclear factor of activated T cells' (NFAT). 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol (E2), blocks nuclear translocation of NFAT. The likely underlying mechanism is inhibition of SOCE, as shown for its synthetic sulfamate ester analogue 2-ethyl-3-sulfamoyloxy-17ß-cyanomethylestra-1,3,5(10)-triene (STX564). Here, we demonstrate that another synthetic bis-sulfamoylated 2ME2 derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE, STX140), an orally bioavailable, multi-targeting anticancer agent and potent steroid sulfatase (STS) inhibitor, antagonized SOCE in T lymphocytes. Downstream events, e.g. secretion of the pro-inflammatory cytokines interferon-γ and interleukin-17, were decreased by STX140 in in vitro experiments. Remarkably, STX140 dosed in vivo completely blocked the clinical disease in both active and transfer experimental autoimmune encephalomyelitis (EAE) in Lewis rats, a T cell-mediated animal model for MS, at a dose of 10 mg/kg/day i.p., whereas neither 2ME2 nor Irosustat, a pure STS inhibitor, showed any effect. The STS inhibitory activity of STX140 is therefore not responsible for its activity in this model. Taken together, inhibition of SOCE by STX140 resulting in full antagonism of clinical symptoms in EAE in the Lewis rat, paired with the known excellent bioavailability and pharmaceutical profile of this drug, open potentially new therapeutic avenues for the treatment of MS.
Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T , Ratos , Animais , 2-Metoxiestradiol , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ratos Endogâmicos Lew , Preparações FarmacêuticasRESUMO
NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.
Assuntos
Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADP/análogos & derivados , Animais , Complexo CD3/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Proteínas Associadas aos Microtúbulos/genética , NADP/metabolismo , Ligação Proteica , Ratos , Receptores de Antígenos de Linfócitos T/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Linfócitos T/metabolismoRESUMO
T cell activation starts with formation of second messengers that release Ca2+ from the endoplasmic reticulum (ER) and thereby activate store-operated Ca2+ entry (SOCE), one of the essential signals for T cell activation. Recently, the steroidal 2-methoxyestradiol was shown to inhibit nuclear translocation of the nuclear factor of activated T cells (NFAT). We therefore investigated 2-methoxyestradiol for inhibition of Ca2+ entry in T cells, screened a library of 2-methoxyestradiol analogues, and characterized the derivative 2-ethyl-3-sulfamoyloxy-17ß-cyanomethylestra-1,3,5(10)-triene (STX564) as a novel, potent and specific SOCE inhibitor. STX564 inhibits Ca2+ entry via SOCE without affecting other ion channels and pumps involved in Ca2+ signaling in T cells. Downstream effects such as cytokine expression and cell proliferation were also inhibited by both 2-methoxyestradiol and STX564, which has potential as a new chemical biology tool.