Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Nutrients ; 16(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408235

RESUMO

Background/Objectives: Human milk is the optimal source of nutrition and protection against infection for infants. If breastfeeding is not possible, standard and hydrolyzed infant formulas (IF) are an alternative. Extensively hydrolyzed IFs (eHFs) contain bioactive peptides, but their activities have rarely been evaluated. The aim of this study was to characterize and compare the bioactive peptide profiles of different eHFs and standard IFs before and after in vitro digestion. Methods: Two forms, liquid and powder, of intact protein formula (iPF) and eHF were subjected to in vitro gastrointestinal digestion, mimicking a young infant's gut (age 0-4 months) and an older infant's gut (>6 months). Bioactive peptides of in vitro digested and undigested formulas were analysed with Liquid Chromatography-Mass Spectrometry (LC-MS). Results: In all samples, a variety of peptides with potential bioactive properties were found. Immuno-regulatory peptides, followed by antimicrobial and antioxidative peptides were most frequent, as were peptides promoting wound healing, increasing mucin secretion, regulating cholesterol metabolism, and preventing bacterial infection. Peptides typically found in yoghurt and colostrum were identified in some formula samples. Conclusions: The high amounts of bioactive peptides with various properties in eHFs and iPFs indicate a possible contribution to infection protection, healthy gut microbiomes, and immunological development of infants. eHFs showed similar compositions of bioactive peptides to iPFs, with intermittently increased peptide variety and quantity.


Assuntos
Digestão , Fórmulas Infantis , Peptídeos , Fórmulas Infantis/química , Humanos , Lactente , Animais , Microbioma Gastrointestinal/fisiologia , Leite/química , Hidrólise , Recém-Nascido , Hidrolisados de Proteína , Bovinos , Proteínas do Leite , Cromatografia Líquida , Fenômenos Fisiológicos da Nutrição do Lactente
2.
Biochem Cell Biol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298790

RESUMO

Bovine lactoferrin (bLf) confers significant functional benefits for human health, but low concentrations in milk and high cost of commercial production limit availability and thus product application. Precision fermentation offers a solution to increase availability of biosimilar recombinant bLf (rbLf) thereby opening new opportunities for this high-value ingredient. To comply with regulatory requirements, we aimed to establish that rbLf from K. phaffii is substantially similar to native bLf in structure and key functions. Intact mass analysis showed a molecular weight of 84 kDa for rbLf, comparable to 82-83 kDa of bLf. LC-MS N-linked glycan profiling revealed predominantly high-mannose-based glycans on rbLf, similar to ~50% of bLf glycans. The isoelectric point and core amino acid sequence of rbLf and bLf are identical. rbLf retains the functional ability to bind and release iron, bind to intestinal Lf receptors, increase epithelial cell growth (>120% of control, P < 0.0001), reduce EPEC growth (>50% reduction, P < 0.0001), bind LPS (+4 fold, P < 0.001) and antagonize LPS-induced TLR4 activity (>40% reduction, P < 0.0001). These results demonstrate similarity of rbLf in structure and function to native bLf, supporting the effective application for expanded market opportunities for infant and adult health.

3.
Mol Neurobiol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179683

RESUMO

Lactoferrin (LF), an iron-binding glycoprotein rich in human milk, promotes neurodevelopment and cognition, but whether it acts through the LF receptor (LfR) and its expression profile in the brain remains unknown. We characterized 972 bp of piglet brain LfR cDNA and found LfR mRNA was expressed all brain regions being highest in the frontal lobe, followed by parietal lobe, brainstem, occipital lobe, cingulate gyrus, subventricular zone, olfactory bulb, hippocampus, amygdala, cerebellum, and thalamus. LfR mRNA and protein in different regions of the brain responded to low (155 mg/kg/day) and high (285 mg/kg/day) LF supplementation of piglets from postnatal days 3 to 38. By postnatal day 39, the low LF diet significantly increased LfR protein expression in the occipital lobe compared to controls, but not the high LF diet. LfR protein in the subventricular zone of the high LF group was 42% and 38% higher than that of the low LF group and controls, respectively. There was a trend for a dose-response relationship between LF intervention and LfR protein expression only in the prefrontal and parietal lobes. LF supplementation significantly improved piglet working memory for a difficult task, which was positively correlated with LfR protein in the prefrontal, parietal, and occipital lobes, but no dose response. Brain LfR responds to dietary LF supplementation, a mechanism by which LF can promote learning and working memory through its receptor. LfR is expressed in the whole brain, and its expression level is anatomic region specific.

4.
Front Nutr ; 11: 1404303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919388

RESUMO

Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN's concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8-24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN's physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.

5.
Acta Paediatr ; 113(10): 2266-2274, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38934330

RESUMO

AIM: To examine how reduced iron content and added bovine lactoferrin in infant formula affect the antibody response following routine immunisation. METHODS: In this randomised controlled trial, 180 Swedish formula-fed infants received, from 6 weeks to 6 months of age, a 2 mg/L iron formula with (n = 72) or without (n = 72) bovine lactoferrin, or a control formula with 8 mg/L iron and no lactoferrin (n = 36). Another 72 infants were recruited as a breastfed reference. Serum immunoglobulin G (IgG) levels against Haemophilus influenzae type b (Hib), diphtheria and tetanus were assessed at four, six and 12 months of age. RESULTS: With an equal gender distribution, 180 + 72 term infants were included with a mean age of 7.0 ± 0.7 weeks. At 12 months, infants fed low iron formula showed a significantly higher geometric mean Hib IgG (1.40 µg/mL [1.07-1.83]) compared to the control formula infants (0.67 µg/mL [0.42-1.07]). For all three vaccines, breastfed infants had significantly lower IgG levels at six and 12 months of age. CONCLUSION: Except for higher Hib IgG levels at 12 months in infants fed low iron formula, the interventions did not affect vaccine IgG response. Unexpectedly, breastfed infants had significantly lower vaccine IgG levels compared to formula-fed infants.


Assuntos
Aleitamento Materno , Vacinas Anti-Haemophilus , Fórmulas Infantis , Lactoferrina , Humanos , Lactente , Feminino , Masculino , Vacinas Anti-Haemophilus/imunologia , Vacinas Anti-Haemophilus/administração & dosagem , Ferro/sangue , Imunoglobulina G/sangue , Anticorpos Antibacterianos/sangue
6.
Food Chem Toxicol ; 190: 114817, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880466

RESUMO

Human milk lactoferrin (hmLF) is a glycoprotein with well-known effects on immune function. Helaina Inc. has used a glycoengineered yeast, Komatagaella phaffii, to produce recombinant human lactoferrin (Helaina rhLF, Effera™) that is structurally similar to hmLF with intended uses as a food ingredient. However, earlier FDA reviews of rhLF were withdrawn due to insufficient safety data and unanswered safety questions the experts and FDA raised about the immunogenicity/immunotoxicity risks of orally ingested rhLF. Helaina organized a panel of leading scientists to build and vet a safety study roadmap containing the studies and safety endpoints needed to address these questions. Panelists participated in a one-day virtual workshop in June 2023 and ensuing discussions through July 2023. Relevant workshop topics included physicochemical properties of LF, regulatory history of bovine LF and rhLF as food ingredients in the FDA's generally recognized as safe (GRAS) program, and synopses of publicly available studies on the immunogenicity/alloimmunization, immunotoxicology, iron homeostasis, and absorption, distribution, metabolism, and excretion of rhLF. Panelists concluded that the safety study roadmap addresses the unanswered safety questions and the intended safe use of rhLF as a food ingredient for adults and agreed on broad applications of the roadmap to assess the safety and support GRAS of other recombinant milk proteins with immunomodulatory functions.


Assuntos
Lactoferrina , Proteínas Recombinantes , Humanos , Proteínas Recombinantes/toxicidade , Animais , Inocuidade dos Alimentos , Saccharomycetales/genética , Saccharomycetales/metabolismo , United States Food and Drug Administration , Estados Unidos , Bovinos , Ingredientes de Alimentos
7.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613059

RESUMO

High protein intake during infancy results in accelerated early weight gain and potentially later obesity. The aim of this follow-up study at 12 months was to evaluate if modified low-protein formulas fed during early infancy have long-term effects on growth and metabolism. In a double-blinded RCT, the ALFoNS study, 245 healthy-term infants received low-protein formulas with either alpha-lactalbumin-enriched whey (α-lac-EW; 1.75 g protein/100 kcal), casein glycomacropeptide-reduced whey (CGMP-RW; 1.76 g protein/100 kcal), or standard infant formula (SF; 2.2 g protein/100 kcal) between 2 and 6 months of age. Breastfed (BF) infants served as a reference. At 12 months, anthropometrics and dietary intake were assessed, and serum was analyzed for insulin, C-peptide, and insulin-like growth factor 1 (IGF-1). Weight gain between 6 and 12 months and BMI at 12 months were higher in the SF than in the BF infants (p = 0.019; p < 0.001, respectively), but were not significantly different between the low-protein formula groups and the BF group. S-insulin and C-peptide were higher in the SF than in the BF group (p < 0.001; p = 0.003, respectively), but more alike in the low-protein formula groups and the BF group. Serum IGF-1 at 12 months was similar in all study groups. Conclusion: Feeding modified low-protein formula during early infancy seems to reduce insulin resistance, resulting in more similar growth, serum insulin, and C-peptide concentrations to BF infants at 6-months post intervention. Feeding modified low-protein formula during early infancy results in more similar growth, serum insulin, and C-peptide concentrations to BF infants 6-months post intervention, probably due to reduced insulin resistance in the low-protein groups.


Assuntos
Fórmulas Infantis , Resistência à Insulina , Humanos , Lactente , Peptídeo C , Seguimentos , Proteínas de Ligação ao GTP , Insulina , Fator de Crescimento Insulin-Like I , Lactalbumina , Aumento de Peso , Estudos Prospectivos
8.
Curr Dev Nutr ; 8(4): 102147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38645881

RESUMO

Background: Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives: Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods: Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results: Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions: Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.

9.
Food Res Int ; 173(Pt 1): 113294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803606

RESUMO

The roles of protein composition, pH and enzymes in goat milk protein hydrolysis is still unclear and the proteolysis of low abundant goat milk proteins has received limited attention. The aim of this study was to study the impact of protein composition and proteolytic conditions on goat milk protein hydrolysis in a simplified digestion model. Both whole milk and infant formula were hydrolyzed at pH 2 and 4, using pepsin as well as pepsin combined with pancreatin. Intact proteins were separated from digests using spin filters, followed by bottom-up proteomics of the separated proteins. Results show that under all conditions, caseins are hydrolyzed quickly. Goat casein hydrolysis in infant formula was slightly faster than in goat whole milk, possibly due to less casein coagulation during pepsin hydrolysis at both pH 2 and 4. Several low abundant immunoactive goat milk proteins, especially immunoglobulins, GLYCAM-1 and osteopontin, resisted proteolysis more than high abundant proteins, independent of the pH and enzyme used for hydrolysis. Fast hydrolysis of casein and slow hydrolysis of immunoactive proteins may indicate a good balance between protein utilization and protection of the infant by goat milk proteins.


Assuntos
Proteínas do Leite , Pancreatina , Animais , Lactente , Humanos , Proteólise , Caseínas , Pepsina A , Cabras , Concentração de Íons de Hidrogênio
10.
FASEB J ; 37(6): e22988, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219531

RESUMO

Osteopontin (OPN) is a pleiotropic protein involved in numerous biological processes such as cell proliferation and differentiation. Since OPN is abundantly present in milk and is known to be relatively resistant to in vitro gastrointestinal digestion, the current study aimed to investigate the roles of oral intake of milk OPN in intestinal development using an established OPN knockout (KO, OPN-/- ) mouse model, in which wild-type (WT, OPN+/+ ) mouse pups were nursed by either WT (OPN+/+ OPN+ group) or OPN KO dams (OPN+/+ OPN- group; +/+ indicates genotype and - indicates milk without OPN), receiving milk with or without OPN from postnatal days 0 to 21 (P0-P21). Our results showed that milk OPN is resistant to in vivo digestion. Compared to OPN+/+ OPN- pups, OPN+/+ OPN+ pups at P4 and P6 had significantly longer small intestines, at P10 and P20 had larger inner jejunum surfaces, and at P30 exhibited more mature/differentiated intestines, as revealed by higher activities of alkaline phosphatase in brush border and more goblet cells, enteroendocrine cells, and Paneth cells. qRT-PCR and immunoblotting results showed that milk OPN increased the expression of integrin αv, integrin ß3, and CD44 in jejunum of mouse pups (P10, P20, and P30). Immunohistochemistry analysis showed that both integrin αvß3 and CD44 are localized in jejunum crypts. In addition, milk OPN increased the phosphorylation/activation of the ERK, PI3K/Akt, Wnt, and FAK signaling pathways. In summary, oral intake of milk OPN in early life promotes intestinal proliferation and differentiation by upregulating the expression of integrin αvß3 and CD44 and thus regulates OPN-integrin αvß3 and OPN-CD44 mediated cellular signaling pathways.


Assuntos
Fenômenos Biológicos , Integrina alfaVbeta3 , Animais , Camundongos , Leite , Osteopontina , Fosfatidilinositol 3-Quinases , Receptores de Hialuronatos
11.
Am J Clin Nutr ; 117 Suppl 1: S61-S86, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37173061

RESUMO

Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.


Assuntos
Lactação , Leite Humano , Feminino , Lactente , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Aleitamento Materno , Fórmulas Infantis
12.
Am J Clin Nutr ; 117(6): 1219-1231, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990225

RESUMO

BACKGROUND: High intake of protein and low intake of plant-based foods during complementary feeding can contribute to negative long-term health effects. OBJECTIVES: To investigate the effects of a protein-reduced, Nordic complementary diet on body composition, growth, biomarkers, and dietary intake, compared with current Swedish dietary recommendations for infants at 12 and 18 mo. METHODS: Healthy, term infants (n = 250) were randomly allocated to either a Nordic group (NG) or a conventional group (CG). From 4 to 6 mo, NG participants received repeated exposures of Nordic taste portions. From 6 to 18 mo, NG was supplied with Nordic homemade baby food recipes, protein-reduced baby food products, and parental support. CG followed the current Swedish dietary recommendations. Measurements of body composition, anthropometry, biomarkers, and dietary intake were collected from baseline and at 12 and 18 mo. RESULTS: Of the 250 infants, 82% (n = 206) completed the study. There were no group differences in body composition or growth. In NG, protein intake, blood urea nitrogen and plasma IGF-1 were lower compared to CG at 12 and 18 mo. Infants in NG consumed 42% to 45% more fruits and vegetables compared to CG at 12 and 18 mo, which was reflected in a higher plasma folate at 12 and 18 mo. There were no between-group differences in EI or iron status. CONCLUSIONS: Introduction of a predominantly plant-based, protein-reduced diet as part of complementary feeding is feasible and can increase fruit and vegetable intake. This trial was registered at clinicaltrials.gov as NCT02634749.


Assuntos
Aleitamento Materno , Ingestão de Alimentos , Feminino , Lactente , Humanos , Dieta , Fenômenos Fisiológicos da Nutrição do Lactente , Frutas , Verduras , Composição Corporal , Biomarcadores
13.
Nutrients ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839368

RESUMO

Protein intake is higher in formula-fed than in breast-fed infants during infancy, which may lead to an increased risk of being overweight. Applying alpha-lactalbumin (α-lac)-enriched whey or casein glycomacropeptide (CGMP)-reduced whey to infant formula may enable further reduction of formula protein by improving the amino acid profile. Growth, nutrient intake, and protein metabolites were evaluated in a randomized, prospective, double-blinded intervention trial where term infants received standard formula (SF:2.2 g protein/100 kcal; n = 83) or low-protein formulas with α-lac-enriched whey (α-lac-EW;1.75 g protein/100 kcal; n = 82) or CGMP-reduced whey (CGMP-RW;1.76 g protein/100 kcal; n = 80) from 2 to 6 months. Breast-fed infants (BF; n = 83) served as reference. Except between 4 and 6 months, when weight gain did not differ between α-lac-EW and BF (p = 0.16), weight gain was higher in all formula groups compared to BF. Blood urea nitrogen did not differ between low-protein formula groups and BF during intervention, but was lower than in SF. Essential amino acids were similar or higher in α-lac-EW and CGMP-RW compared to BF. Conclusion: Low-protein formulas enriched with α-lac-enriched or CGMP-reduced whey supports adequate growth, with more similar weight gain in α-lac-enriched formula group and BF, and with metabolic profiles closer to that of BF infants.


Assuntos
Caseínas , Lactalbumina , Lactente , Humanos , Soro do Leite , Estudos Prospectivos , Fenômenos Fisiológicos da Nutrição do Lactente , Proteínas do Soro do Leite , Fórmulas Infantis/química , Aumento de Peso , Ingestão de Alimentos
14.
Nutrients ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432587

RESUMO

MicroRNA (miRNA) is small non-coding RNA involved in gene silencing and post-transcriptional regulation of gene expression. Milk exosomes are microvesicles containing microRNAs (miRNAs). miR-22-3p (miR-22) is plentiful in human milk exosomes and may contribute to intestinal development since milk exosomes and microRNAs are resistant to gastrointestinal digestion in infants. After miR-22 mimics were transfected to human intestinal crypt-like epithelial cells (HIECs) using Lipofectamine for 24 h, RNA was isolated for microarray assay. Microarray results show that miR-22 markedly regulates gene expression, and the roles of miR-22 include promotion of proliferation, regulation of immune functions, and inhibition of apoptosis. Based on the microarray results and miR-22 predicted target genes, CCAAT/enhancer-binding protein δ (C/EBPδ) may be an important direct target of miR-22. C/EBPδ is a transcription factor that regulates numerous biological processes including cell proliferation. In miR-22 transfected HIECs, expression of the C/EBPδ gene was significantly inhibited. Silencing of the C/EBPδ gene by siRNA resulted in increased proliferation of HIECs. A luciferase assay showed that miR-22 specifically binds to the 3'-untranslated region of C/EBPδ mRNA. In summary, milk-derived miR-22 promotes intestinal proliferation by modifying gene expression, and C/EBPδ may be an important target for miR-22 involved in this effect.


Assuntos
MicroRNAs , Leite , Humanos , Animais , Leite/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/fisiologia , Regiões 3' não Traduzidas/genética , Células Epiteliais/metabolismo , Expressão Gênica
15.
Nutrients ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235565

RESUMO

Iron supplements are frequently provided to infants in high-income countries despite low incidence of iron deficiency. There is growing concern regarding adverse health and development outcomes of excess iron provision in early life. Excess iron may directly damage developing organs through the formation of reactive oxygen species, alter systemic inflammatory signaling, and/or dysregulate trace mineral metabolism. To better characterize the in vivo effects of excess iron on development, we utilized a pre-weanling rat pup model. Lewis rat litters were culled to eight pups (four males and four females) and randomly assigned to daily supplementation groups receiving either vehicle control (CON; 10% w/v sucrose solution) or ferrous sulfate (FS) iron at one of the following doses: 10, 30, or 90 mg iron/kg body weight-FS-10, FS-30, and FS-90, respectively-from postnatal day (PD) 2 through 9. FS-90 litters, but not FS-30 or FS-10, failed to thrive compared to CON litters and had smaller brains on PD 10. Among the groups, FS-90 liver iron levels were highest, as were white blood cell counts. Compared to CON, circulating MCP-1 and liver zinc were increased in FS-90 pups, whereas liver copper was decreased. Growth defects due to excess FS provision in pre-weanling rats may be related to liver injury, inflammation, and altered trace mineral metabolism.


Assuntos
Sobrecarga de Ferro , Oligoelementos , Animais , Cobre , Suplementos Nutricionais , Feminino , Compostos Ferrosos , Ferro/metabolismo , Masculino , Ratos , Ratos Endogâmicos Lew , Espécies Reativas de Oxigênio , Sacarose , Oligoelementos/farmacologia , Zinco
16.
Nutrients ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297062

RESUMO

Infants are frequently supplemented with iron to prevent iron deficiency, but iron supplements may have adverse effects on infant health. Although iron supplements can be highly effective at improving iron status and preventing iron deficiency anemia, iron may adversely affect growth and development, and may increase risk for certain infections. Several reviews exist in this area; however, none has fully summarized all reported outcomes of iron supplementation during infancy. In this review, we summarize the risks and benefits of iron supplementation as they have been reported in controlled studies and in relevant animal models. Additionally, we discuss the mechanisms that may underly beneficial and adverse effects.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Animais , Ferro/efeitos adversos , Anemia Ferropriva/prevenção & controle , Suplementos Nutricionais/efeitos adversos , Medição de Risco
18.
Front Immunol ; 13: 894649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072603

RESUMO

Intelectins are carbohydrate-binding proteins implicated in innate immunity and highly conserved across chordate evolution, including both ascidians and humans. Human intelectin-1 (ITLN1) is highly abundant within the intestinal mucosa and binds microbial but not host glycans. Genome-wide association studies identified SNPs in ITLN1 that are linked to susceptibility for Crohn's disease. Moreover, ITLN1 has been implicated in the pathophysiology of obesity and associated metabolic disease. To gain insight on biological activities of human ITLN1 in vivo, we developed a C57BL/6 mouse model genetically targeting the gene encoding the functional mouse ortholog. In wild-type C57BL/6 mice, both mRNA and protein analysis showed high expression of Itln1 in the small intestine, but manifold lower levels in colon and other extraintestinal tissues. Whereas intestinal expression of human ITLN1 localizes to goblet cells, our data confirm that mouse Itln1 is expressed in Paneth cells. Compared to wild-type littermate controls, mice homozygous for the Itln1 hypomorphic trapping allele had reduced expression levels of Itln1 expression (~10,000-fold). The knockout mice exhibited increased susceptibility in an acute model of experimentally induced colitis with 2% w/v dextran sulfate sodium (DSS). In a model of chronic colitis using a lower dose of DSS (1.5% w/v), which enabled a detailed view of disease activity across a protracted period, no differences were observed in body weight, fecal texture, hemoccult scores, food/water intake, or colon length at necropsy, but there was a statistically significant genotype over time effect for the combined fecal scores of disease activity. In model of diet-induced obesity, using two western-style diets, which varied in amounts of sugar (as sucrose) and saturated fat (as lard), mice with Itln1 expression ablated showed no increased susceptibility, in terms of weight gain, food intake, plasma markers of obesity compared to wildtype littermates. While the mouse genetic knockout model for Itln1 holds promise for elucidating physiological function(s) for mammalian intelectins, results reported here suggest that Itln1, a Paneth cell product in C57BL/6 mice, likely plays a minor role in the pathophysiology of chemically induced colitis or diet-induced obesity.


Assuntos
Colite , Citocinas , Proteínas Ligadas por GPI , Estudo de Associação Genômica Ampla , Lectinas , Animais , Colite/induzido quimicamente , Colite/genética , Citocinas/genética , Modelos Animais de Doenças , Proteínas Ligadas por GPI/genética , Humanos , Lectinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade
19.
J Pediatr Gastroenterol Nutr ; 75(4): 521-528, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666855

RESUMO

OBJECTIVES: Protein overfeeding in infants can have negative effects, such as diabetes and childhood obesity; key to reducing protein intake from formula is improving protein quality. The impact of a new infant formula [study formula (SF)] containing alpha-lactalbumin, lactoferrin, partially hydrolyzed whey, and whole milk on growth and tolerance compared to a commercial formula (CF) and a human milk reference arm was evaluated. METHODS: This randomized, double-blind trial included healthy, singleton, term infants, enrollment age ≤14 days. Primary outcome was mean daily weight gain. Secondary outcomes were anthropometrics, formula intake, serum amino acids, adverse events, gastrointestinal characteristics, and general disposition. RESULTS: Non-inferiority was demonstrated. There were no differences between the formula groups for z scores over time. Formula intake [-0.33 oz/kg/day, 95% confidence interval (CI): -0.66 to -0.01, P = 0.05] and mean protein intake (-0.13 g/kg/day, 95% CI: -0.26 to 0.00, P = 0.05) were lower in the SF infants, with higher serum essential amino acid concentrations (including tryptophan) compared to the CF infants. Energetic efficiency was 14.0% (95% CI: 8.3%, 19.7%), 13.0% (95% CI: 6.0%, 20.0%), and 18.1% (95% CI: 9.4%, 26.8%) higher for weight, length, and head circumference, respectively, in SF infants compared to the CF infants. SF infants had significantly fewer spit-ups and softer stool consistency than CF infants. CONCLUSIONS: The SF resulted in improved parent-reported gastrointestinal tolerance and more efficient growth with less daily formula and protein intake supporting that this novel formula may potentially reduce the metabolic burden of protein overfeeding associated with infant formula.


Assuntos
Fórmulas Infantis , Obesidade Infantil , Criança , Humanos , Lactente , Fórmulas Infantis/química , Lactalbumina/análise , Lactoferrina , Leite Humano/química , Triptofano/análise
20.
J Nutr Biochem ; 108: 109084, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716863

RESUMO

Milk fat globule membrane (MFGM), the membrane surrounding secreted fat droplets in milk, contains components involved in a wide range of bioprocesses including cell proliferation and differentiation. The intestine is relatively immature and permeable at birth. Since MFGM is partly resistant to digestion in infancy, we hypothesized that orally ingested MFGM promotes intestinal development by enhancing intestinal barrier functions in early life. An established suckling rat model was used; Sprague-Dawley rats were bred, and litters were culled to 10 pups/dam. Pups were supplemented orally with MFGM (0, 100, or 300 mg/kg/d) from postnatal day 1-20. Intestine samples were collected for histology, real-time quantitative PCR, immunoblotting, and immunohistochemistry analysis. Additionally, differentiated Caco-2 cells were used to assess effects of MFGM on the human intestinal barrier. Control and MFGM-supplemented rat pups showed similar growth. Intestinal differentiation and expression of tight junction proteins in jejunum and colon were significantly increased by orally ingested MFGM, and MFGM supplementation significantly activated PI3K/Akt/mTOR, mitogen-activated protein kinases, and myosin light chain kinase signaling pathways, suggesting that MFGM promotes intestinal development by triggering various signaling pathways. In human enterocytes (polarized Caco-2 cells), MFGM (400 µg/mL for 72 h) decreased permeability, as revealed by increased transepithelial electrical resistance. In Caco-2 cells, MFGM also enhanced expression of tight junction proteins, including claudin-4 and ZO-2. In conclusion, orally ingested MFGM may exert beneficial roles in intestinal development by activating various cell signaling pathways to upregulate tight junction proteins and thereby increasing intestinal barrier functions.


Assuntos
Enterócitos , Fosfatidilinositol 3-Quinases , Animais , Células CACO-2 , Suplementos Nutricionais , Glicolipídeos , Glicoproteínas , Humanos , Gotículas Lipídicas , Ratos , Ratos Sprague-Dawley , Proteínas de Junções Íntimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA