Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16887, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313166

RESUMO

Powder metallurgy methods, particularly ball milling, are up-and-coming in tuning metal matrix composite (MMC) properties. This study uses ball milling at various milling times to create an aluminum matrix composite (AMC) reinforced with magnetite nanoparticles. The milling time was optimized to create an AMC with favorable mechanical and magnetic properties, and its effect on magnetism, microstructure, and hardness was studied. The AMC displayed the highest magnetic saturation of 11.04 emu/g after 8 h of milling. After compaction and sintering, characterization of the final composite material using Energy Disperse Spectroscopy and X-ray diffraction (XRD) showed the presence of Al2O3 and Fe3Al phases leading to enhanced mechanical properties in terms of Vickers hardness that reached a value of 81 Hv corresponding to an increase of 270% compared to unreinforced aluminum.

2.
Sci Adv ; 6(19): eaba2007, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494725

RESUMO

Interaction between dipolar forces, such as permanent magnets, generally leads to the formation of one-dimensional chains and rings. We investigated whether it was possible to let dipoles self-assemble into three-dimensional structures by encapsulating them in a shell with a specific shape. We found that the condition for self-assembly of a three-dimensional crystal is satisfied when the energies of dipoles in the parallel and antiparallel states are equal. Our experiments show that the most regular structures are formed using cylinders and cuboids and not by spheroids. This simple design rule will help the self-assembly community to realize three-dimensional crystals from objects in the micrometer range, which opens up the way toward previously unknown metamaterials.

3.
Arch Microbiol ; 201(10): 1427-1433, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31414157

RESUMO

We controlled and observed individual magneto-tactic bacteria (Magnetospirillum gryphiswaldense) inside a [Formula: see text]-high microfluidic channel for over 4 h. After a period of constant velocity, the duration of which varied between bacteria, all observed bacteria showed a gradual decrease in their velocity of about [Formula: see text]. After coming to a full stop, different behaviour was observed, ranging from rotation around the centre of mass synchronous with the direction of the external magnetic field, to being completely immobile. Our results suggest that the influence of the high-intensity illumination and the presence of the channel walls are important parameters to consider when performing observations of such long duration.


Assuntos
Técnicas Bacteriológicas/métodos , Magnetospirillum/fisiologia , Microfluídica , Técnicas Bacteriológicas/normas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA