Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cardiovasc Res ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696700

RESUMO

Despite the emergence of novel diagnostic, pharmacological, interventional and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle-based platforms encompass diverse imaging, delivery and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular level. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active nanoparticle uptake. In this review, we discuss an array of inorganic, carbon-based and lipid-based nanoparticles that provide magnetic, radiographic and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of nanoparticles that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation and defective efferocytosis. We also provide examples of nanoparticle systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic nanoparticles. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in nanoparticle design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.

2.
Sleep ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695327

RESUMO

While rapid eye movement (REM) sleep is conventionally treated as a unified state, it comprises two distinct microstates: phasic and tonic REM. Recent research emphasizes the importance of understanding the interplay between these microstates, hypothesizing their role in transient shifts between sensory detachment and external awareness. Previous studies primarily employed linear metrics to probe cognitive states, such as oscillatory power, while in this study, we adopt Lempel-Ziv Complexity (LZC), to examine the nonlinear features of electroencephalographic (EEG) data from the REM microstates and to gain complementary insights into neural dynamics during REM sleep. Our findings demonstrate a noteworthy reduction in LZC during phasic REM compared to tonic REM states, signifying diminished EEG complexity in the former. Additionally, we noted a negative correlation between decreased LZC and delta band power, along with a positive correlation with alpha band power. This study highlights the potential of nonlinear EEG metrics, particularly LZC, in elucidating the distinct features of REM microstates. Overall, this research contributes to advancing our understanding of the complex dynamics within REM sleep and opens new avenues for exploring its implications in both clinical and non-clinical contexts.

3.
Mol Syst Biol ; 20(6): 719-740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580884

RESUMO

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.


Assuntos
Mutação , Estabilidade Proteica , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Camundongos , Feminino , Sistemas CRISPR-Cas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Regulação Neoplásica da Expressão Gênica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
5.
ACS Appl Mater Interfaces ; 15(41): 48179-48184, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796027

RESUMO

Highly efficient electrochemical interfaces are significant for the oxygen reduction reaction (ORR). However, previous efforts have been mainly paid to design catalytic sites with high intrinsic activity and neglect the electrode/electrolyte interfaces, especially the noncovalent interactions in the outer Helmholtz plane (OHP). Herein, an Fe-N-C single-atom catalyst is synthesized and acts as the model catalyst to demonstrate the effect of noncovalent interactions on the ORR performance. Two specific molecules of THA+ and TEA+ with different structures and functional groups have been selected to tune the OHP through noncovalent interactions. TEA+ can adjust the OHP, improve the oxygen diffusion coefficient, and increase the double-layer capacitance. Therefore, TEA+ enhances the activity, selectivity, and stability of Fe-N-C single-atom catalysts toward the ORR. This provides a new approach to finding new directions in designing electrochemical interfaces beyond the intrinsic catalytic sites in acidic electrolytes.

7.
Nutrients ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836473

RESUMO

Selenium is an essential micronutrient that plays a crucial role in maintaining human health. Selenium deficiency is seriously associated with various diseases such as Keshan disease, Kashin-Beck disease, cataracts, and others. Conversely, selenium supplementation has been found to have multiple effects, including antioxidant, anti-inflammatory, and anticancer functions. Compared with inorganic selenium, organic selenium exhibits higher bioactivities and a wider range of safe concentrations. Consequently, there has been a significant development of selenium-enriched foods which contain large amounts of organic selenium in order to improve human health. This review summarizes the physiological role and metabolism of selenium, the development of selenium-enriched foods, the physiological functions of selenium-enriched foods, and provides an analysis of total selenium and its species in selenium-enriched foods, with a view to laying the foundation for selenium-enriched food development.


Assuntos
Doença de Kashin-Bek , Selênio , Oligoelementos , Humanos , Alimentos Fortificados , Antioxidantes , Doença de Kashin-Bek/metabolismo
9.
Chem Asian J ; 18(20): e202300601, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37646223

RESUMO

Carbon-supported Pt is currently used as catalyst for oxygen reduction reaction (ORR) in fuel cells but is handicapped by carbon corrosion at high potential. Herein, a stable PtNi/SnO2 interface structure has been designed and achieved by a two-step solvothermal method. The robust and conductive Sb-doped SnO2 supports provide sufficient surfaces to confine PtNi alloy. Moreover, PtNi/Sb0.11 SnO2 presents a more strongly coupled Pt-SnO2 interface with lattice overlap of Pt (111) and SnO2 (110), together with enhanced electron transfer from SnO2 to Pt. Therefore, PtNi/Sb0.11 SnO2 exhibits a high catalytic activity for ORR with a half-wave potential of 0.860 V versus reversible hydrogen electrode (RHE) and a mass activity of 166.2 mA mgPt -1 @0.9 V in 0.1 M HClO4 electrolyte. Importantly, accelerated degradation testing (ADT) further identify the inhibition of support corrosion and agglomeration of Pt-based active nanoparticles in PtNi/Sb0.11 SnO2 . This work highlights the significant importance of modulating metal-support interactions for improving the catalytic activity and durability of electrocatalysts.

10.
Nat Commun ; 14(1): 3150, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258521

RESUMO

How the genetic landscape governs a tumor's response to immunotherapy remains poorly understood. To assess the immune-modulatory capabilities of 573 genes associated with altered cytotoxicity in human cancers, here we perform CRISPR/Cas9 screens directly in mouse lung cancer models. We recover the known immune evasion factors Stat1 and Serpinb9 and identify the cancer testis antigen Adam2 as an immune modulator, whose expression is induced by KrasG12D and further elevated by immunotherapy. Using loss- and gain-of-function experiments, we show that ADAM2 functions as an oncogene by restraining interferon and TNF cytokine signaling causing reduced presentation of tumor-associated antigens. ADAM2 also restricts expression of the immune checkpoint inhibitors PDL1, LAG3, TIGIT and TIM3 in the tumor microenvironment, which might explain why ex vivo expanded and adoptively transferred cytotoxic T-cells show enhanced cytotoxic efficacy in ADAM2 overexpressing tumors. Together, direct in vivo CRISPR/Cas9 screens can uncover genetic alterations that control responses to immunotherapies.


Assuntos
Antineoplásicos , Fertilinas , Neoplasias Pulmonares , Serpinas , Animais , Humanos , Masculino , Camundongos , Antígenos de Neoplasias , Fertilinas/genética , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteínas de Membrana/genética , Serpinas/genética , Linfócitos T Citotóxicos , Microambiente Tumoral
11.
Cereb Cortex ; 33(13): 8679-8692, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37160327

RESUMO

The Eureka effect refers to the common experience of suddenly solving a problem. Here, we study this effect in a pattern recognition paradigm that requires the segmentation of complex scenes and recognition of objects on the basis of Gestalt rules and prior knowledge. In the experiments, both sensory evidence and prior knowledge were manipulated in order to obtain trials that do or do not converge toward a perceptual solution. Subjects had to detect objects in blurred scenes and indicate recognition with manual responses. Neural dynamics were assessed with high-density Electroencephalography (EEG) recordings. The results show significant changes of neural dynamics with respect to spectral distribution, coherence, phase locking, and fractal dimensionality. The Eureka effect was associated with increased coherence of oscillations in the alpha and theta bands over widely distributed regions of the cortical mantle predominantly in the right hemisphere. This increase in coherence was associated with decreased beta power over parietal and central regions and with decreased alpha power over frontal and occipital areas. In addition, there was a right hemisphere-lateralized reduction of fractal dimensionality. We propose that the Eureka effect requires cooperation of cortical regions involved in working memory, creative thinking, and the control of attention.


Assuntos
Córtex Cerebral , Eletroencefalografia , Humanos , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Memória de Curto Prazo/fisiologia , Atenção
14.
Biol Cybern ; 117(1-2): 61-79, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622415

RESUMO

The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca2+) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador
15.
J Environ Sci (China) ; 126: 434-444, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503770

RESUMO

Previous study found that the pre-treatment of sewage sludge with nitrite improves the biogas production during the mono/two-phase anaerobic digestion (AD) using batch biochemical methane potential tests. In this study, the effects of nitrite on hydrolysis-acidification, biogas production, volatile solids destruction and microbial composition in semi-continuous two-phase AD of sewage sludge were investigated. The addition of nitrite promotes sludge organic matter solubilization (+484%) and VFAs production (+98.9%), and causes an increase in the VS degradation rate during the AD process (+8.7%). The comparison of biogas production from the acidogenic and methanogenic reactors with or without the addition of nitrite implies that the nitrite has no significant effect on the overall biogas production of two-phase sludge AD process. High-throughput sequencing analysis shows that the microbial communities of bacteria and archaea in two-phase AD reactors significantly changes after the addition of nitrite. Vulcanibacillus (bacteria) and Candidatus Methanofastidiosum (archaea) become the dominant genera in the acidogenic and methanogenic reactors with the nitrite respectively. These findings provide new insights about using nitrite to promote the organic matter degradation of sewage sludge in a semi-continuous two-phase AD system.


Assuntos
Euryarchaeota , Microbiota , Nitritos , Esgotos , Biocombustíveis , Hidrólise , Archaea
16.
Curr Res Neurobiol ; 3: 100056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518347

RESUMO

In meditation practices that involve focused attention to a specific object, novice practitioners often experience moments of distraction (i.e., mind wandering). Previous studies have investigated the neural correlates of mind wandering during meditation practice through Electroencephalography (EEG) using linear metrics (e.g., oscillatory power). However, their results are not fully consistent. Since the brain is known to be a chaotic/nonlinear system, it is possible that linear metrics cannot fully capture complex dynamics present in the EEG signal. In this study, we assess whether nonlinear EEG signatures can be used to characterize mind wandering during breath focus meditation in novice practitioners. For that purpose, we adopted an experience sampling paradigm in which 25 participants were iteratively interrupted during meditation practice to report whether they were focusing on the breath or thinking about something else. We compared the complexity of EEG signals during mind wandering and breath focus states using three different algorithms: Higuchi's fractal dimension (HFD), Lempel-Ziv complexity (LZC), and Sample entropy (SampEn). Our results showed that EEG complexity was generally reduced during mind wandering relative to breath focus states. We conclude that EEG complexity metrics are appropriate to disentangle mind wandering from breath focus states in novice meditation practitioners, and therefore, they could be used in future EEG neurofeedback protocols to facilitate meditation practice.

17.
Sci Rep ; 12(1): 18452, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323734

RESUMO

Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/urina , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Pelve
18.
Cancer Discov ; 12(12): 2930-2953, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36108220

RESUMO

Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE: Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Epigênese Genética , Recidiva Local de Neoplasia/genética , Carcinoma Intraductal não Infiltrante/genética , Transformação Celular Neoplásica/genética
19.
Anal Chim Acta ; 1209: 339863, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569873

RESUMO

Surface modification and functionalization is typically required to engineer upconversion nanoparticles (UCNPs) for biosensing and bioimaging applications. Nevertheless, despite various antibody conjugation methods having been applied to UCNPs, no consensus has been reached on the best choice, as the results from individual studies are largely unable to be compared due to inadequate assessment of the properties of the conjugated products. Here, we introduce a systematic approach to quantitatively evaluate the biological activity of antibody-conjugated UCNPs. We determine that the optimal antibody conjugation efficiency to our colominic acid polysaccharide-coated UCNPs via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS) coupling is approximately 70%, corresponding to 16 antibodies per nanoparticle of 63 nm hydrodynamic diameter, with on average 12 of the 16 antibodies maintaining their affinity to the target antigens. The binding ability of the antibody-conjugated UCNPs to the antigen was well preserved, as verified by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and cellular imaging. This is the first study to quantitate the active antibody binding capacity of polysaccharide coated UCNP nanoparticles, offering a practical guideline for benchmarking functionalised UCNPs in future studies.


Assuntos
Nanopartículas , Anticorpos , Nanopartículas/química , Polissacarídeos
20.
Acta Biomater ; 147: 403-413, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605956

RESUMO

The central nervous system (CNS) is protected by the blood-brain barrier (BBB), which acts as a physical barrier to regulate and prevent the uptake of endogenous metabolites and xenobiotics. However, the BBB prevents most non-lipophilic drugs from reaching the CNS following systematic administration. Therefore, there is considerable interest in identifying drug carriers that can maintain the biostability of therapeutic molecules and target their transport across the BBB. In this regard, upconversion nanoparticles (UCNPs) have become popular as a nanoparticle-based solution to this problem, with the additional benefit that they display unique properties for in vivo visualization. The majority of studies to date have explored basic spherical UCNPs for drug delivery applications. However, the biophysical properties of UCNPs, cell uptake and BBB transport have not been thoroughly investigated. In this study, we described a one-pot seed-mediated approach to precisely control longitudinal growth to produce bright UCNPs with various aspect ratios. We have systematically evaluated the effects of the physical aspect ratios and PEGylation of UCNPs on cellular uptake in different cell lines and an in vivo zebrafish model. We found that PEGylated the original UCNPs can enhance their biostability and cell uptake capacity. We identify an optimal aspect ratio for UCNP uptake into several different types of cultured cells, finding that this is generally in the ratio of 2 (length/width). This data provides a crucial clue for further optimizing UCNPs as a drug carrier to deliver therapeutic agents into the CNS. STATEMENT OF SIGNIFICANCE: The central nervous system (CNS) is protected by the blood-brain barrier (BBB), which acts as a highly selective semipermeable barrier of endothelial cells to regulate and prevent the uptake of toxins and pathogens. However, the BBB prevents most non-lipophilic drugs from reaching the CNS following systematic administration. The proposed research is significant because identifying the aspect ratio of drug carriers that maintains the biostability of therapeutic molecules and targets their transport across the blood-brain barrier (BBB) is crucial for designing an efficient drug delivery system. Therefore, this research provides a vital clue for further optimizing UCNPs as drug carriers to deliver therapeutic molecules into the brain.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Nanopartículas/química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA