Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 458: 140232, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38991241

RESUMO

Dunaliella salina is a promising source of ß-carotene, widely employed in the food industry. This study aimed to evaluate the sequential application of the Ionic Liquid (IL) cholinium oleate as an extraction solvent for D. salina ß-carotene recovery and, sequentially, as emulsifier for emulsion-based products obtained therefrom. The IL was evaluated regarding its ability to permeabilize the cells and recover ß-carotene at different temperatures (25-65 °C) and IL concentrations (0-46%). The use of the IL as solvent greatly improved ß-carotene recovery (>84%). The IL already present in the obtained extracts loaded with recovered ß-carotene was sequentially used as emulsifier in the production of nanoemulsions (NE). NE presented a ß-carotene entrapment efficiency of 100% and were kinetically stable for 30 days and presented droplet size, size distribution, and ζ-potential of 220 nm, 0.21, and -67 mV, respectively. These results indicate that using IL sequential as solvent and emulsifier has potential applications in the food industry.


Assuntos
Emulsificantes , Emulsões , Líquidos Iônicos , Solventes , beta Caroteno , beta Caroteno/química , Líquidos Iônicos/química , Emulsificantes/química , Emulsões/química , Solventes/química , Tamanho da Partícula , Clorofíceas/química , Química Verde
2.
Food Res Int ; 188: 114498, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823878

RESUMO

The emulsifying potential of a biocompatible ionic liquid (IL) to produce lipid-based nanosystems developed to enhance the bioaccessibility of cannabidiol (CBD) was investigated. The IL (cholinium oleate) was evaluated at concentrations of 1 % and 2 % to produce nanoemulsions (NE-IL) and nanostructured lipid carriers (NLC-IL) loaded with CBD. The IL concentration of 1 % demonstrated to be sufficient to produce both NE-IL and NLC-IL with excellent stability properties, entrapment efficiency superior to 99 %, and CBD retention rate of 100 % during the storage period evaluated (i.e. 28 days at 25 °C). The in vitro digestion evaluation demonstrated that the NLC-IL provided a higher stability to the CBD, while the NE-IL improved the CBD bioaccessibility, which was mainly related to the composition of the lipid matrices used to obtain each nanosystem. Finally, it was observed that the CBD cytotoxicity was reduced when the compound was entrapped into both nanosystems.


Assuntos
Canabidiol , Emulsificantes , Líquidos Iônicos , Canabidiol/química , Líquidos Iônicos/química , Líquidos Iônicos/toxicidade , Emulsificantes/química , Humanos , Emulsões , Digestão , Nanoestruturas/química , Sobrevivência Celular/efeitos dos fármacos , Disponibilidade Biológica , Nanopartículas/química , Portadores de Fármacos/química , Células CACO-2 , Tamanho da Partícula
3.
J Food Sci ; 89(6): 3290-3305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767864

RESUMO

A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lß) or Tween 80 (NLC Tß) as an emulsifier. ß-Carotene was entrapped within NLC developed as a promising strategy to overcome ß-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of ß-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of ß-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tß remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lß showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tß also provided high ß-carotene protection and delivery capacity (i.e., ß-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tß has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lß. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of ß-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect ß-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the ß-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.


Assuntos
Digestão , Emulsificantes , Nanoestruturas , beta Caroteno , beta Caroteno/química , beta Caroteno/farmacocinética , Células CACO-2 , Humanos , Emulsificantes/química , Nanoestruturas/química , Disponibilidade Biológica , Portadores de Fármacos/química , Tamanho da Partícula , Lipídeos/química , Polissorbatos/química , Lecitinas/química , Sobrevivência Celular/efeitos dos fármacos , Óleo de Girassol/química
4.
Food Chem ; 441: 138295, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183719

RESUMO

This study evaluated the physicochemical characteristics of nanostructured lipid carriers (NLCs) as a potential vehicle for cannabidiol (CBD), a lipophilic molecule with great potential to promote health benefits. NLCs were produced using hemp seed oil and fully-hydrogenated soybean oil at different proportions. The emulsifiers evaluated were soybean lecithin (SL), Tween 80 (T80) and a mixture of SL:T80 (50:50). CBD was tested in the form of CBD-rich extract or isolate CBD, to verify if it affects the NLCs characteristics. Based on particle size and polydispersity, SL was considered the most suitable emulsifier to produce the NLCs. All lipid proportions evaluated had no remarkable effect on the physicochemical characteristics of NLCs, resulting in CBD-loaded NLCs with particle size below 250 nm, high CBD entrapment efficiency and CBD retention rate of 100% for 30 days, demonstrating that NLCs are a suitable vehicle for both CBD-rich extract or isolate CBD.


Assuntos
Canabidiol , Nanopartículas , Nanoestruturas , Nanopartículas/química , Portadores de Fármacos/química , Promoção da Saúde , Nanoestruturas/química , Óleo de Soja , Emulsificantes/química , Tamanho da Partícula , Polissorbatos
5.
Foods ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048269

RESUMO

Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil (thyme oil, TO; flaxseed oil, FO; or oregano oil, OO) coating on the safety and quality of vacuum-packaged beef during storage at 4 °C. An optimized bio-based coating formulation was selected (2% Ch + 2% GTE + 0.1% FO) to be applied to three fresh beef cuts (shoulder, Sh; knuckle, Kn; Striploin, St) based on its pH (5.8 ± 0.1), contact angle (22.3 ± 0.4°) and rheological parameters (viscosity = 0.05 Pa.s at shear rate > 20 s-1). Shelf-life analysis showed that the Ch-GTE-FO coating delayed lipid oxidation and reduced total viable counts (TVC) and Enterobacteriaceae growth compared with uncoated beef samples over five days. In addition, Ch-GTE-FO coating decreased total color changes of beef samples (e.g., ∆E* = 9.84 and 3.94, for non-coated and coated Kn samples, respectively) for up to five days. The original textural parameters (hardness, adhesiveness and springiness) of beef cuts were maintained during storage when Ch-GTE-FO coating was applied. Based on the physicochemical and microbial characterization results, the combination of the Ch-GTE-FO coating developed was effective in preserving the quality of fresh beef cuts during refrigerated storage along with vacuum packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA