Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385802

RESUMO

BACKGROUND: Allergic conjunctivitis is one of the most common eye disorders. Different drugs are used for its treatment. Hesperidin is an active substance isolated from Citrus sinensis L. (Rutaceae) fruit peels, with known anti-inflammatory activity but low solubility. It was complexed with cyclodextrin and encapsulated in situ gel to extend its duration in the eye. RESULTS: The optimized formulation comprised 1% hesperidin, 1.5% hydroxyethyl cellulose, and 16% poloxamer 407. The viscosity at 25 °C was 492 ± 82 cP, and at 35 °C it was 8875 ± 248 cP, the pH was 7.01 ± 0.03, gelation temperature was 34 ± 1.3 °C, and gelation time was 33 ± 1.2 s. There was a 66% in vitro release in the initial 2 h, with a burst effect. A lipoxygenase (LOX) inhibition test determined that hesperidin was active at high doses on leukotyrens seen in the body in allergic diseases. In cell-culture studies, the hesperidin cyclodextrin complex loaded in situ gel, BRN9-CD (poloxamer 16%, hydroxy ethyl cellulose (HEC) 1.5%), enhanced cell viability in comparison with the hesperidin solution. It was determined that BRN9-CD did not cause any irritation in the ocular tissues in the Draize test. CONCLUSION: The findings of this study demonstrate the potential of the in situ gel formulation of hesperidin in terms of ease of application and residence time on the ocular surface. Due to its notable LOX inhibition activity and positive outcomes in the in vivo Draize test, it appears promising for incorporation into pharmaceutical formulations. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Chemosphere ; 344: 140324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778644

RESUMO

Pesticides, such as cypermethrin (CYP) and chlorpyrifos (CPF), are widely used around the world and are known to cause toxicological effects in the brains of fish and other non-target organisms. Long non-coding RNAs (LncRNAs) are a new class of non-coding RNAs that are highly expressed in the brain and play crucial roles in brain function by regulating gene expression. Many studies have investigated the toxic effects of CYP and CPF on the brain. However, no study has been conducted on the relationship between LncRNAs and the toxicity caused by these chemicals. Therefore, this study aimed to determine changes in the lncRNA expression profile in the brains of fish exposed to CYP and CPF. Out of a total of 482 lncRNAs that were differentially expressed between control and CPF groups, 53 were found to be up-regulated, and 429 were down-regulated. Similarly, among the 200 lncRNAs differentially expressed between the control and CYP groups, 71 were up-regulated, and 129 were down-regulated. Additionally, 268 differentially expressed lncRNAs were identified between CYP and CPF groups, with 240 being up-regulated and the rest being down-regulated. In addition, LncRNAs expressed from fish brains exposed to CYP and CPF were found to regulate multiple signaling pathways, including MAPK, FoxO, PPAR, TGF-ß, and Wnt signaling pathways.


Assuntos
Clorpirifos , RNA Longo não Codificante , Animais , Clorpirifos/toxicidade , Peixe-Zebra/genética , RNA Longo não Codificante/genética , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA