Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Euro Surveill ; 29(33)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149824

RESUMO

Wastewater-based surveillance (WBS) has become a widespread method to monitor transmission of SARS-CoV-2 and other human pathogens in Europe. We conducted a survey about WBS systems' objectives, approaches, representativeness and usefulness in 10 invited European countries in 2023, i.e. Austria, Belgium, Denmark, Finland, Greece, Hungary, Italy, Luxembourg, the Netherlands and Norway. All countries completed the study questionnaire about their SARS-CoV-2 WBS systems, and shared information about WBS of other pathogens as deemed relevant. SARS-CoV-2 WBS systems primarily monitored national and subnational trends (population coverage: 25-99%), and a majority (8/10) also tracked variant distribution. Nine of 10 countries reported that their SARS-CoV-2 WBS systems were representative of their population and all countries remarked that the findings were valuable for public health decision-making. Results were shared with relevant public health authorities and published via dedicated websites and/or dashboards. WBS systems of other pathogens were mostly in the early stages, with some countries implementing pilots. Notable exceptions were the well-established poliovirus surveillance systems in Finland, Italy and the Netherlands. This study brings understanding the diverse landscape of WBS in Europe, offering insights for future developments and collaborations. Furthermore, it highlights the need for further integration of WBS into other European surveillance systems.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , Europa (Continente)/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Inquéritos e Questionários , Águas Residuárias/virologia , Pandemias , Vigilância Epidemiológica Baseada em Águas Residuárias , Vigilância da População/métodos , Pneumonia Viral/epidemiologia , Saúde Pública , Infecções por Coronavirus/epidemiologia , Betacoronavirus
2.
Hum Genomics ; 18(1): 72, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937848

RESUMO

BACKGROUND: Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance. RESULTS: The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies. CONCLUSIONS: These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , Águas Residuárias/virologia , Águas Residuárias/microbiologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Europa (Continente)/epidemiologia , Inquéritos e Questionários , Esgotos/virologia , Esgotos/microbiologia , Resistência Microbiana a Medicamentos
3.
Sci Total Environ ; 933: 173217, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750766

RESUMO

The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, blaTEM, blaOXA-48, blaCTX-M-1 group, blaKPC) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 109), tetA (5.2 × 108), blaTEM (1.1 × 108), blaOXA-48 (2.1 × 107), blaCTX-M-1 group (1.1 × 107), blaKPC (9.4 × 105), and int1 (5.5 × 109). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics.


Assuntos
RNA Ribossômico 16S , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/microbiologia , Itália , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Microbiota/efeitos dos fármacos , Microbiota/genética , Genes Bacterianos , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA